Skip to main content
Log in

Cloning and Functional Identification of Gibberellin Receptor SvGID1s Gene of Salix viminalis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Gibberellins (GAs) play a key role in the transition from vegetative growth to flowering and the GA receptor GID1 (GIBBERELLIN INSENSITIVE DWARF1) is the central part of GA-signaling. The differential expression of SvGID1 was found in the transcriptome sequencing in our previous study, which was further verified at different stages of flowering of Salix viminalis. In order to reveal the function GID1 of S. viminalis, two genes of SvGID1b and SvGID1c were cloned and transformed into Arabidopsis thaliana, respectively. The results showed that the full ORF length of SvGID1b and SvGID1c genes were both 1035 bp, encoding 344 amino acids, which were typical globular proteins. The peptide chain contained more α-helix structure, and had 99% similarity with GID1b and GID1c amino acid sequences of Salix suchowensis. Phylogenetic analysis showed that SvGID1s had close genetic relationship with woody plants such as Populus alba and Populus tomentosa, and had far genetic relationship with rice. After overexpression in A. thaliana, the total gibberellin, active gibberellin content and the expression level of GA3ox1, the key gene for GA4 synthesis, were not significantly different from those in the wild-type, while the expression levels of FUL, SOC1 and FT, the key genes for flowering in plants, were increased, and the expression levels of FLC and GAI were decreased. The ectopic expression of SvGID1s increased the sensitivity of plants to gibberellin and enhanced gibberellin effect, caused early bolting, budding and flowering, led to higher plant, longer hypocotyl and other phenomena. The results provide a theoretical basis for clarifying the regulation of gibberellin on flower bud differentiation of flowering plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Srikanth, S. (2011). Regulation of flowering time: All roads lead to Rome[J]. Cellular and Molecular Life Sciences, 68(12), 2013–2037.

    Article  CAS  PubMed  Google Scholar 

  2. Fornara, F., Montaigu, A. D., & Coupland, G. (2010). SnapShot: Control of flowering in Arabidopsis[J]. Cell, 141(3), 550-550.e2.

    Article  PubMed  Google Scholar 

  3. Wilson, R. N., Heckman, J. W., & Somerville, C. R. (1992). Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days[J]. Plant Physiology, 100(1), 403–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. King, R. W., Moritz, T., Evans, L. T., Martin, J., & Chandler, P. M. (2006). Regulation of flowering in the long-day grass Lolium temulentum by gibberellins and the FLOWERING LOCUS T gene[J]. Plant Physiology, 141, 498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tamaki, S., Matsuo, S., Wong, H. L., Yokoi, S., & Shimamoto, K. (2007). Hd3a protein is a mobile flowering signal in rice[J]. Science, 316, 1033–1036.

    Article  CAS  PubMed  Google Scholar 

  6. Kozlowska, M., Zajac, M. R., Stachowiak, J., & Janowska, B. (2007). Changes in carbohy-drate contents of Zantedeschia leaves under gibberellins-stimulated flowering[J]. Acta Physiologiae Plantarum, 29, 27–32.

    Article  CAS  Google Scholar 

  7. Chen, J. R. J., Henny, D. B., McConnell, D. B., & Caldwell, R. D. (2003). Gibberellic acid affects growth and flowering of Philodendron‘Black Cardinal’[J]. Plant Growth Regulation, 41, 1–6.

    Article  Google Scholar 

  8. Hu, C., Chen, Y., Liu, S., & Peng, J. (2016). Regulation of flowering time of Chinese cabbage by paclobutrazol and gibberellin[J]. Agricultural and Biological Chemistry, 35, 73–75.

    Google Scholar 

  9. Hedden, P., & Sun, T. P. (2006). Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. The Plant Cell, 18, 3399–3414.

    PubMed  PubMed Central  Google Scholar 

  10. Hirano, K., Nakajima, M., Asano, K., Nishiyama, T., Sakakibara, H., Kojima, M., Katoh, E., Xiang, H., Tanahashi, T., & Hasebe, M. (2007). The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte selaginella moellendorffii but not in the Bryophyte Physcomitrella patens[J]. The Plant Cell, 19(10), 3058–3079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. MacMillan, J. (2002). Erratum: Occurrence of gibberellins in vascular plants, fungi, and bacteria[J]. Journal of Plant Growth Regulation, 21(3), 242–243.

    Article  CAS  Google Scholar 

  12. Li, Y. D., & Dan, X. H. (2022). Regulation of gibberellin metabolism and green revolution[J/OL]. Biotechnology Briefing, 38(02), 195–204.

    Google Scholar 

  13. Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T. Y., Hsing, Y. I., Kitano, H., Yamaguchi, I., & Matsuoka, M. (2005). GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 437(7059), 693–698.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, R., Tao, X. Y., Jiao, Y. R., Yuan, K. L., Zhang, S. L., & Tao, S. T. (2021). Identification and expression analysis of gibberellin receptor gene GID1 in pear[J]. Plant Physiology, 57(07), 1527–1537.

    Google Scholar 

  15. Hauvermale, A. L., Ariizumi, T., & Steber, C. M. (2014). Theroles of the GA receptors GID1a, GID1b, and GID1cin sly1-independ-ent GA signaling[J]. Plant Signaling & Behavior, 9, e28030.

    Article  Google Scholar 

  16. Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z. L., Powers, S. J., Gong, F., Phillips, A. L., Hedden, P., & Sun, T. P. (2006). Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. The Plant Cell, 18, 3399–3414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, L., Cao, T., Zhang, J., & Lou, Y. (2018). Overexpression of OsGID1 enhances the resistance of rice to the Brown Planthopper Nilaparvata lugens[J]. International Journal of Molecular Sciences, 19(9), 2744.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang, H. L., Wang, W., Huang, J. F., Wang, Y., Hu, L., Yuan, Y., Lyu, M., & Wu, B. (2021). Role of gibberellin and its three GID1 receptors in Jasminum sambac stem elongation and flowering[J]. Planta, 255, 17.

    Article  PubMed  Google Scholar 

  19. Olszewski, N., Sun, T. P., & Gubler, F. (2002). Gibberellin signaling: Biosynthesis, catabolism, and response pathways. The Plant Cell, 14, 61–80.

    Article  Google Scholar 

  20. Peng, X.Y. (2017). Mechanism of floral bud differentiation and discovery of sex determination genes in male and female Salix viminalis. Dissertation for Dr. Degree, Chinese Academy of Forestry, Beijing, China.

  21. Clough, S. J., & Bent, A. F. (1998). Floral dip: A simplifed method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735–743.

    Article  CAS  PubMed  Google Scholar 

  22. Gazara, R. K., Moharana, K. C., Bellieny-Rabelo, D., & Venancio, T. M. (2018). Expansion and diversification of the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1) family in land plants[J]. Plant Molecular Biology, 97, 435–449.

    Article  CAS  PubMed  Google Scholar 

  23. Gallego-Giraldo, C., Hu, J., Urbez, C., Gomez, M. D., Sun, T. P., & Perez-Amador, M. A. (2014). Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis [J]. Plant, 79, 1020–1032.

    CAS  Google Scholar 

  24. Binenbaum, J., Weinstain, R., & Shani, E. (2018). Gibberellin localization and transport in plants[J]. Trends in Plant Science, 23, 410–421.

    Article  CAS  PubMed  Google Scholar 

  25. Suge, H. (1985). Ethylene and gibberellin: Regulation of internodal elongation and nodal root development in floating rice[J]. Plant and Cell Physiology, 26(4), 607–614.

    Article  CAS  Google Scholar 

  26. Wang, H. F., & Shang, Q. M. (2018). Molecular mechanism of hypocotyl cell elongation in angiosperms[J]. Chinese J. Bot, 53(02), 276–287.

    CAS  Google Scholar 

  27. Lau, O. S., & Deng, X. W. (2010). Plant hormone signaling lightens up: Integrators of light and hormones[J]. Current Opinion in Plant Biology, 13(5), 571–577.

    Article  CAS  PubMed  Google Scholar 

  28. Lucas, M. D., Davière, J. M., Rodríguez-Falcón, M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., Fankhauser, C., Blázquez, M. A., Titarenko, E., & Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation[J]. Nature, 451(7177), 480–484.

    Article  PubMed  Google Scholar 

  29. Sun, T. (2010). Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development[J]. Plant Physiology, 154(2), 567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ariizumi, T., Murase, K., & Steber, S. C. M. (2008). Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1[J]. The Plant Cell, 20, 2447–2459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roxrud, I., Lid, S. E., Fletcher, J. C., Schmidt, E. D., & Opsahl-Sorteberg, H. G. (2007). GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development[J]. Plant Cell Physiology, 3, 471–483.

    Article  Google Scholar 

  32. Chen, I. C., Lee, S. C., Pan, S. M., & Hsieh, H. L. (2007). GASA4, a GA-stimulated gene, participates in light signaling in Arabidopsis[J]. Plant Science, 172(6), 1062–1071.

    Article  CAS  Google Scholar 

  33. Zhang, S. C., & Wang, X. J. (2008). Study on GASA gene expression in Arabidopsis downstream of DELLA[J]. Science Notification, 22, 2760–2767.

    Google Scholar 

  34. Chen, M. (2017). Cloning and functional analysis of gibberellin receptor gene MsGID1b in alfalfa. Dissertation for Master Degree, Chinese Academy of Agricultural Sciences, Beijing, China.

  35. Ueguchi-Tanaka, M., Nakajima, M., Katoh, E., Ohmiya, H., Asano, K., Saji, S., Hongyu, X., Ashikari, M., Kitano, H., Yamaguchi, I., & Matsuoka, M. (2007). Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin[J]. The Plant Cell, 19(7), 2140–2155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yue, J. H., Zhang, D., & Shen, X. H. (2017). Cloning and functional analysis of the full length of gibberellin receptor gene ApGID1 in Lotus japonicus[J]. Journal of Shanghai Jiao Tong University (Agricultural Science Edition), 35(01), 1–8.

    Google Scholar 

  37. Zhang, Y. C. (2015). Cloning and functional analysis of gibberellin receptor GID1 from coniferous trees[J]. Nanjing Agricultural University, 6, 37–40.

    Google Scholar 

  38. Ferrándiz, C., Gu, Q., Martienssen, R., & Yanofsky, M. F. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER[J]. Development, 127(4), 725–734.

    Article  PubMed  Google Scholar 

  39. Hempel, F. D., Weigel, D., Mandel, M. A., Ditta, G., Zambryski, P., Feldman, L. J., & Yanofsky, M. F. (1997). Floral determination and expression of floral regulatory genes in Arabidopsis[J]. Development, 124, 3845–3853.

    Article  CAS  PubMed  Google Scholar 

  40. Mandel, M. A., & Yanofsky, M. F. (1995). The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1[J]. The Plant Cell, 7, 1763–1771.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, H. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J]. Genes & Development, 14(18), 2366–2376.

    Article  CAS  Google Scholar 

  42. Böhlenius, H., Huang, T., Charbonnel-Campaa, L., Brunner, A. M., Jansson, St., Strauss, S. H., & Nilsson, O. (2006). CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees [J]. Science, 312(5776), 1040–1043.

    Article  PubMed  Google Scholar 

  43. Kim, S. Y., Park, B. S., Kwon, S. J., Lim, M. H., Park, Y. D., Kim, D. Y., Suh, S. C., Jin, Y. M., Ahn, J. H., & Lee, Y. H. (2007). Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L ssp pekinensis)[J]. Plant Cell Rep, 26(3), 327–336.

    Article  CAS  PubMed  Google Scholar 

  44. Osnato, M., Castillejo, C., Matías-Hernández, L., & Pelaz, S. (2012). TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis[J]. Nature Communications, 3(3), 808.

    Article  PubMed  Google Scholar 

  45. Long, W. H., Meng, J. G., Xu, S. S., et al. (2019). Cloning and expression analysis of GA3 receptor gene DoGID1a in Chinese yam[J]. Journal of Agricultural Biotechnology, 27(11), 8–9.

    Google Scholar 

  46. Liu, B. (2017). Functional verification and expression profile analysis of cucumber gibberellin receptor gene CsGID1a[J]. China Agricultural University, 5, 37–38.

    Google Scholar 

  47. Eriksson, S., BÖhlenius, H., Moritz, T., & Ove, N. (2006). GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation[J]. The Plant Cell, 18(9), 2172–2181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. King, R. W., Moritz, T., Evans, L. T., Martin, J., Andersen, C. H., & Blundell, C. (2006). Regulation of flowering in the long-day grass by gibberellins and the gene[J]. Plant Physiology, 141(2), 498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bradley, M. V., & Crane, J. C. (1960). Gibberellin-induced inhibition of bud development in some species of Prunus[J]. Science, 131(3403), 825–826.

    Article  CAS  PubMed  Google Scholar 

  50. Wilkie, J. D., Sedgley, M., & Olesen, T. (2008). Regulation of floral initiation in horticulturae trees[J]. Journal of Experimental Botany, 59(12), 3215–3228.

    Article  CAS  PubMed  Google Scholar 

  51. Nakagawa, M., Honsho, C., Kanzaki, S., Shimizu, K., & Utsunomiya, N. (2012). Isolation and expression analysis of FLOWERING LOCUS T-like and gibberellin metabolism genes in biennial-bearing mango trees[J]. Science Horticulturae, 139, 108–117.

    Article  CAS  Google Scholar 

  52. Li, J., Pan, B. Z., Niu, L., Niu, L., Chen, M. S., Tang, M., & Xu, Z. F. (2018). Gibberellin inhibits floral initiation in the perennial woody plant Jatropha curcas[J]. Journal of Plant Growth Regulation, 37(3), 999–1006.

    Article  CAS  Google Scholar 

  53. Dennis, F. G., & Neilsen, J. C. (1999). Physiological factors affecting biennial bearing in tree fruit: The role of seeds in apple[J]. HortTechnology, 9(3), 317–322.

    Article  Google Scholar 

  54. Yang, N., Nie, J. L., Xin, W., Pei, Y., & Shi, F. C. (2021). Effects of different concentrations of gibberellin on seed germination of wild cherry[J]. Horticulture and Seedling, 41(02), 41–44.

    Google Scholar 

Download references

Acknowledgements

We thank the Shandong Provincial Natural Science Fund (ZR2020MC159) for its support and the 35S-GFP-NOS-1300 plasmid provided by Dr. Song Yuguang of Qufu Normal University.

Funding

Shandong Provincial Natural Science Fund (ZR2020MC159).

Author information

Authors and Affiliations

Authors

Contributions

QL performed experimental work and data analysis. QL and XP designed the study and contributed to writing and revising the manuscript. YW and XZ contributed to experimental work. MS contributed to revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiangyong Peng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1759 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wu, Y., Zhang, X. et al. Cloning and Functional Identification of Gibberellin Receptor SvGID1s Gene of Salix viminalis. Mol Biotechnol 65, 715–725 (2023). https://doi.org/10.1007/s12033-022-00573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00573-2

Keywords

Navigation