Skip to main content

Advertisement

Log in

A Novel Immunotoxin Targeting Epithelial Cell Adhesion Molecule Using Single Domain Antibody Fused to Diphtheria Toxin

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Epithelial Cell Adhesion Molecule (EpCAM) is overexpressed in a variety of cancers such as colon, stomach, pancreas, and prostate adenocarcinomas. Inhibition of EpCAM is considered as a potential target for cancer therapy. In current study, anti-EpCAM immunotoxin (α-EpCAM IT) was developed using genetic fusion of α-EpCAM single domain antibody (nanobody) (α-EpCAM Nb) to truncated form of diphtheria toxin. The expression of recombinant α-EpCAM IT was induced by Isopropyl β-d-1-thiogalactopyranoside (IPTG) and confirmed by SDS-PAGE and western blot. Recombinant α-EpCAM IT was purified from the inclusion bodies and refolded using urea gradient procedure. The cytotoxicity and apoptosis activity of α-EpCAM IT on EpCAM over-expressing (MCF7), low-expressing (HEK293), and no-expressing (HUVEC) cells were evaluated by 3–4,5-Dimethylthiazol-2-yl (MTT) assay and annexin V-FITC-PI assay as well. In addition, anti-tumor activity of α-EpCAM IT was evaluated on nude mice bearing MCF7 tumor cells. Results showed success expression and purification of α-EpCAM IT. The α-EpCAM IT showed time and dose-dependent anti-proliferative activity on MCF-7 cells. However, α-EpCAM IT did not show any anti-proliferative activity on HEK293 and HUVEC cells as well. In addition, the annexin V-FITC-PI assay results showed that α-EpCAM IT significantly increased apoptotic rate in MCF-7 cells with no effect on HEK293 and HUVEC as well. Moreover, α-EpCAM IT significantly reduced tumor size in vivo study. The achieved results indicate the potential of designing α-EpCAM IT as a novel therapeutic for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liao, M.-Y., Lai, J.-K., Kuo, M.Y.-P., Lu, R.-M., Lin, C.-W., Cheng, P.-C., et al. (2015). An anti-EpCAM antibody EpAb2–6 for the treatment of colon cancer. Oncotarget, 6(28), 24947.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Spizzo, G., Fong, D., Wurm, M., Ensinger, C., Obrist, P., Hofer, C., et al. (2011). EpCAM expression in primary tumour tissues and metastases: An immunohistochemical analysis. Journal of Clinical Pathology, 64(5), 415–420.

    Article  PubMed  Google Scholar 

  3. Yamashita, T., Budhu, A., Forgues, M., & Wang, X. W. (2007). Activation of hepatic stem cell marker EpCAM by Wnt–β-catenin signaling in hepatocellular carcinoma. Cancer Research, 67(22), 10831–10839.

    Article  CAS  PubMed  Google Scholar 

  4. Riesenberg, R., Buchner, A., Pohla, H., & Lindhofer, H. (2001). Lysis of prostate carcinoma cells by trifunctional bispecific antibodies (αEpCAM× αCD3). Journal of Histochemistry & Cytochemistry, 49(7), 911–917.

    Article  CAS  Google Scholar 

  5. Fischer, R., Köhler, K., Fotin-Mleczek, M., & Brock, R. (2004). A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. Journal of Biological Chemistry, 279(13), 12625–12635.

    Article  CAS  PubMed  Google Scholar 

  6. Khalil, I. A., Kogure, K., Futaki, S., & Harashima, H. (2006). High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. Journal of Biological Chemistry, 281(6), 3544–3551.

    Article  CAS  PubMed  Google Scholar 

  7. Kawamura, K. S., Sung, M., Bolewska-Pedyczak, E., & Gariépy, J. (2006). Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells. Biochemistry, 45(4), 1116–1127.

    Article  CAS  PubMed  Google Scholar 

  8. Richard, J. P., Melikov, K., Brooks, H., Prevot, P., Lebleu, B., & Chernomordik, L. V. (2005). Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. Journal of Biological Chemistry, 280(15), 15300–15306.

    Article  CAS  PubMed  Google Scholar 

  9. Wadia, J. S., Stan, R. V., & Dowdy, S. F. (2004). Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Medicine, 10(3), 310–315.

    Article  CAS  PubMed  Google Scholar 

  10. Beilhartz, G. L., Sugiman-Marangos, S. N., & Melnyk, R. A. (2017). Repurposing bacterial toxins for intracellular delivery of therapeutic proteins. Biochemical Pharmacology, 142, 13–20.

    Article  CAS  PubMed  Google Scholar 

  11. Holmes, R. K. (2000). Biology and molecular epidemiology of diphtheria toxin and the tox gene. Journal of Infectious Diseases, 181, S156–S167.

    Article  CAS  PubMed  Google Scholar 

  12. Bennett, M., & Eisenberg, D. (1994). Refined structure of monomelic diphtheria toxin at 2.3 Å resolution. Protein Science, 3(9), 1464–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Collier, R. (2001). Understanding the mode of action of diphtheria toxin: A perspective on progress during the 20th century. Toxicon, 39(11), 1793–1803.

    Article  CAS  PubMed  Google Scholar 

  14. Shapira, A., & Benhar, I. (2010). Toxin-based therapeutic approaches. Toxins, 2(11), 2519–2583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steeland, S., Vandenbroucke, R. E., & Libert, C. (2016). Nanobodies as therapeutics: Big opportunities for small antibodies. Drug Discovery Today, 21(7), 1076–1113.

    Article  CAS  PubMed  Google Scholar 

  16. Dumoulin, M., Conrath, K., Van Meirhaeghe, A., Meersman, F., Heremans, K., Frenken, L. G., et al. (2002). Single-domain antibody fragments with high conformational stability. Protein Science, 11(3), 500–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kazemi-Lomedasht, F., Behdani, M., Rahimpour, A., Habibi-Anbouhi, M., Poshang-Bagheri, K., & Shahbazzadeh, D. (2015). Selection and characterization of specific nanobody against human immunoglobulin G. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 34(3), 201–205.

    Article  CAS  PubMed  Google Scholar 

  18. Kazemi-Lomedasht, F., Behdani, M., Habibi-Anbouhi, M., & Shahbazzadeh, D. (2016). Production and characterization of novel camel single domain antibody targeting mouse vascular endothelial growth factor. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 35(3), 167–171.

    Article  CAS  PubMed  Google Scholar 

  19. Farnoodian, M., Wang, S., Dietz, J., Nickells, R. W., Sorenson, C. M., & Sheibani, N. (2017). Negative regulators of angiogenesis: Important targets for treatment of exudative AMD. Clinical Science, 131(15), 1763–1780.

    Article  CAS  PubMed  Google Scholar 

  20. Alirahimi, E., Kazemi-Lomedasht, F., Shahbazzadeh, D., Habibi-Anbouhi, M., Chafi, M. H., Sotoudeh, N., et al. (2018). Nanobodies as novel therapeutic agents in envenomation. Biochimica et Biophysica Acta (BBA)-General Subjects, 1862(12), 2955–2965.

    Article  CAS  PubMed  Google Scholar 

  21. Crawford, T. N., Alfaro, D. V., III., Kerrison, J. B., & Jablon, E. P. (2009). Diabetic retinopathy and angiogenesis. Current Diabetes Reviews, 5(1), 8–13.

    Article  CAS  PubMed  Google Scholar 

  22. Alirahimi, E., Ashkiyan, A., Kazemi-Lomedasht, F., Azadmanesh, K., Hosseininejad-Chafi, M., Habibi-Anbouhi, M., et al. (2017). Intrabody targeting vascular endothelial growth factor receptor-2 mediates downregulation of surface localization. Cancer Gene Therapy, 24(1), 33–37.

    Article  CAS  PubMed  Google Scholar 

  23. Kazemi-Lomedasht, F., Muyldermans, S., Habibi-Anbouhi, M., & Behdani, M. (2018). Design of a humanized anti vascular endothelial growth factor nanobody and evaluation of its in vitro function. Iranian Journal of Basic Medical Sciences, 21(3), 260.

    PubMed  PubMed Central  Google Scholar 

  24. Bagheri, M., Babaei, E., Shahbazzadeh, D., Habibi-Anbouhi, M., Alirahimi, E., Kazemi-Lomedasht, F., et al. (2017). Development of a recombinant camelid specific diabody against the heminecrolysin fraction of Hemiscorpius lepturus scorpion. Toxin Reviews, 36(1), 7–11.

    Article  CAS  Google Scholar 

  25. Kazemi-Lomedasht, F., Behdani, M., Bagheri, K. P., Anbouhi, M. H., Abolhassani, M., Khanahmad, H., et al. (2014). Expression and purification of functional human vascular endothelial growth factor-a121; the most important angiogenesis factor. Advanced Pharmaceutical Bulletin, 4(4), 323.

    PubMed  PubMed Central  Google Scholar 

  26. Sadeghi, A., Behdani, M., Muyldermans, S., Habibi-Anbouhi, M., & Kazemi-Lomedasht, F. (2020). Development of a mono-specific anti-VEGF bivalent nanobody with extended plasma half-life for treatment of pathologic neovascularization. Drug Testing and Analysis, 12(1), 92–100.

    Article  CAS  PubMed  Google Scholar 

  27. Karami, E., Sabatier, J.-M., Behdani, M., Irani, S., & Kazemi-Lomedasht, F. (2020). A nanobody-derived mimotope against VEGF inhibits cancer angiogenesis. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1233–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beatty, J. D., Beatty, B. G., & Vlahos, W. G. (1987). Measurement of monoclonal-antibody affinity by noncompetitive enzyme-immunoassay. Journal of Immunological Methods, 100(1–2), 173–179.

    Article  CAS  PubMed  Google Scholar 

  29. Cohen, M. H., Shen, Y. L., Keegan, P., & Pazdur, R. (2009). FDA drug approval summary: Bevacizumab (Avastin®) as treatment of recurrent glioblastoma multiforme. The Oncologist, 14(11), 1131–1138.

    Article  CAS  PubMed  Google Scholar 

  30. Ahadi, M., Ghasemian, H., Behdani, M., & Kazemi-Lomedasht, F. (2019). Oligoclonal selection of nanobodies targeting vascular endothelial growth factor. Journal of Immunotoxicology, 16(1), 34–42.

    Article  CAS  PubMed  Google Scholar 

  31. Naderi, S., Roshan, R., Ghaderi, H., Behdani, M., Mahmoudi, S., Habibi-Anbouhi, M., et al. (2020). Selection and characterization of specific nanobody against neuropilin-1 for inhibition of angiogenesis. Molecular Immunology, 128, 56–63.

    Article  CAS  PubMed  Google Scholar 

  32. Roshan, R., Naderi, S., Behdani, M., Cohan, R. A., Ghaderi, H., Shokrgozar, M. A., et al. (2021). Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Molecular Immunology, 129, 70–77.

    Article  CAS  PubMed  Google Scholar 

  33. Kazemi-Lomedasht, F., Pooshang-Bagheri, K., Habibi-Anbouhi, M., Hajizadeh-Safar, E., Shahbazzadeh, D., Mirzahosseini, H., et al. (2017). In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies. Iranian Journal of Basic Medical Sciences, 20(5), 489.

    PubMed  PubMed Central  Google Scholar 

  34. Jamnani, F. R., Rahbarizadeh, F., Shokrgozar, M. A., Ahmadvand, D., Mahboudi, F., & Sharifzadeh, Z. (2012). Targeting high affinity and epitope-distinct oligoclonal nanobodies to HER2 over-expressing tumor cells. Experimental Cell Research, 318(10), 1112–1124.

    Article  CAS  PubMed  Google Scholar 

  35. Van Der Gun, B., Huisman, C., Stolzenburg, S., Kazemier, H., Ruiters, M., Blancafort, P., et al. (2013). Bidirectional modulation of endogenous EpCAM expression to unravel its function in ovarian cancer. British Journal of Cancer, 108(4), 881–886.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Homayouni, V., Ganjalikhani-Hakemi, M., Rezaei, A., Khanahmad, H., Behdani, M., & Lomedasht, F. K. (2016). Preparation and characterization of a novel nanobody against T-cell immunoglobulin and mucin-3 (TIM-3). Iranian Journal of Basic Medical Sciences, 19(11), 1201.

    PubMed  PubMed Central  Google Scholar 

  37. Shafiee, F., Aucoin, M. G., & Jahanian, N. A. (2019). Targeted diphtheria toxin based therapy: A review article. Frontiers in Microbiology, 10, 2340.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Simon, N., & FitzGerald, D. (2016). Immunotoxin therapies for the treatment of epidermal growth factor receptor-dependent cancers. Toxins, 8(5), 137.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Pasteur Institute of Iran

Funding

This study was funded by Pasteur Institute of Iran (Grant Number BD-9470).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Ahangari Cohan or Fatemeh Kazemi-Lomedasht.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshan, R., Naderi, S., Behdani, M. et al. A Novel Immunotoxin Targeting Epithelial Cell Adhesion Molecule Using Single Domain Antibody Fused to Diphtheria Toxin. Mol Biotechnol 65, 637–644 (2023). https://doi.org/10.1007/s12033-022-00565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00565-2

Keywords

Navigation