Skip to main content

Advertisement

Log in

Heterologous Expression and Characterization of a Full-length Protozoan Nitroreductase from Leishmania orientalis isolate PCM2

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Leishmaniasis, a parasitic disease found in parts of the tropics and subtropics, is caused by Leishmania protozoa infection. Nitroreductases (NTRs), enzymes involved in nitroaromatic prodrug activation, are attractive targets for leishmaniasis treatment development. In this study, a full-length recombinant NTR from the Leishmania orientalis isolate PCM2 (LoNTR), which causes severe leishmaniasis in Thailand, was successfully expressed in soluble form using chaperone co-expression in Escherichia coli BL21(DE3). The purified histidine-tagged enzyme (His6-LoNTR) had a subunit molecular mass of 36 kDa with no cofactor bound; however, the addition of exogenous flavin (either FMN or FAD) readily increased its enzyme activity. Bioinformatics analysis found that the unique N-terminal sequences of LoNTR is only present in Leishmania where the addition of this region might result in the loss of flavin binding. Either NADH or NADPH can serve as an electron donor to transfer electrons to nitrofurazone; however, NADPH was preferred. Molecular oxygen was identified as an additional electron acceptor resulting in wasteful electrons from NADPH for the main catalysis. Steady-state kinetic experiments revealed a ping-pong mechanism for His6-LoNTR with Km,NADPH, Km,NFZ, and kcat of 28 µM, 68 µM, and 0.84 min−1, respectively. Besides nitroreductase activity, His6-LoNTR also has the ability to reduce quinone derivatives. The properties of full-length His6-LoNTR were different from previously reported protozoa and bacterial NTRs in many respects. This study provides information of NTR catalysis to be developed as a potential future therapeutic target to treat leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data are included in the article and supplementary material.

References

  1. Cotton, J. A. (2017). The expanding world of human leishmaniasis. Trends in Parasitology, 33(5), 341–344. https://doi.org/10.1016/j.pt.2017.02.002

    Article  PubMed  Google Scholar 

  2. Leelayoova, S., Siripattanapipong, S., Manomat, J., Piyaraj, P., Tan-Ariya, P., Bualert, L., & Mungthin, M. (2017). Leishmaniasis in Thailand: A review of causative agents and situations. American Journal of Tropical Medicine and Hygiene, 96(3), 534–542. https://doi.org/10.4269/ajtmh.16-0604

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alvar, J., Velez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jannin, J., den Boer, M., Team WHOLC. (2012). Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE, 7(5), e35671. https://doi.org/10.1371/journal.pone.0035671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leelayoova, S., Siripattanapipong, S., Hitakarun, A., Kato, H., Tan-ariya, P., Siriyasatien, P., Osatakul, S., & Mungthin, M. (2013). Multilocus characterization and phylogenetic analysis of Leishmania siamensis isolated from autochthonous visceral leishmaniasis cases, southern Thailand. BMC Microbiology, 13, 60. https://doi.org/10.1186/1471-2180-13-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sukmee, T., Siripattanapipong, S., Mungthin, M., Worapong, J., Rangsin, R., Samung, Y., Kongkaew, W., Bumrungsana, K., Chanachai, K., Apiwathanasorn, C., Rujirojindakul, P., Wattanasri, S., Ungchusak, K., & Leelayoova, S. (2008). A suspected new species of Leishmania, the causative agent of visceral leishmaniasis in a Thai patient. International Journal for Parasitology, 38(6), 617–622. https://doi.org/10.1016/j.ijpara.2007.12.003

    Article  PubMed  Google Scholar 

  6. Anuntasomboon, P., Siripattanapipong, S., Unajak, S., Choowongkomon, K., Burchmore, R., Leelayoova, S., Mungthin, M., & E-kobon, T. (2022). Comparative draft genomes of Leishmania orientalis isolate PCM2 (formerly named Leishmania siamensis) and Leishmania martiniquensis isolate PCM3 from the Southern province of Thailand. Biology (Basel), 11(4), 515. https://doi.org/10.3390/biology11040515

    Article  CAS  PubMed  Google Scholar 

  7. Raether, W., & Hanel, H. (2003). Nitroheterocyclic drugs with broad spectrum activity. Parasitology Research, 90, S19-39. https://doi.org/10.1007/s00436-002-0754-9

    Article  PubMed  Google Scholar 

  8. Wilkinson, S. R., Bot, C., Kelly, J. M., & Hall, B. S. (2011). Trypanocidal activity of nitroaromatic prodrugs: Current treatments and future perspectives. Current Topics in Medicinal Chemistry, 11(16), 2072–2084. https://doi.org/10.2174/156802611796575894

    Article  CAS  PubMed  Google Scholar 

  9. Patterson, S., & Wyllie, S. (2014). Nitro drugs for the treatment of trypanosomatid diseases: Past, present, and future prospects. Trends in Parasitology, 30(6), 289–298. https://doi.org/10.1016/j.pt.2014.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boddu, R. S., Perumal, O., & Divakar, K. (2021). Microbial nitroreductases: A versatile tool for biomedical and environmental applications. Biotechnology and Applied Biochemistry, 68(6), 1518–1530. https://doi.org/10.1002/bab.2073

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, R., Shang, L., Jin, H., Ma, C., Wu, Y., Liu, Q., Xia, Z., Wei, F., Zhu, X. Q., & Gao, H. (2010). In vitro and in vivo antileishmanial efficacy of nitazoxanide against Leishmania donovani. Parasitology Research, 107(2), 475–479.

    Article  PubMed  Google Scholar 

  12. Wyllie, S., Patterson, S., & Fairlamb, A. H. (2013). Assessing the essentiality of Leishmania donovani nitroreductase and its role in nitro drug activation. Antimicrobial Agents and Chemotherapy, 57(2), 901–906. https://doi.org/10.1007/s00436-010-1906-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wyllie, S., Roberts, A. J., Norval, S., Patterson, S., Foth, B. J., Berriman, M., Read, K. D., & Fairlamb, A. H. (2016). Activation of bicyclic nitro-drugs by a novel nitroreductase (ntr2) in Leishmania. PLoS Pathogens, 12(11), e1005971. https://doi.org/10.1371/journal.ppat.1005971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Voak, A. A., Gobalakrishnapillai, V., Seifert, K., Balczo, E., Hu, L., Hall, B. S., & Wilkinson, S. R. (2013). An essential type I nitroreductase from Leishmania major can be used to activate leishmanicidal prodrugs. Journal of Biological Chemistry, 288(40), 28466–28476. https://doi.org/10.1074/jbc.M113.494781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mesquita, J. T., Pinto, E. G., Taniwaki, N. N., Galisteo, A. J., Jr., & Tempone, A. G. (2013). Lethal action of the nitrothiazolyl-salicylamide derivative nitazoxanide via induction of oxidative stress in Leishmania (L.) infantum. Acta Tropica, 128(3), 666–673. https://doi.org/10.1016/j.actatropica.2013.09.018

    Article  CAS  PubMed  Google Scholar 

  16. Petri e Silva, S. C., Palace-Berl, F., Tavares, L. C., Soares, S. R., & Lindoso, J. A. (2016). Effects of nitro-heterocyclic derivatives against Leishmania (L) infantum promastigotes and intracellular amastigotes. Experimental Parasitology, 163, 68–75. https://doi.org/10.1016/j.exppara.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  17. Pinto, E. G., Barbosa, L. R. S., Mortara, R. A., & Tempone, A. G. (2020). Targeting intracellular Leishmania (L) infantum with nitazoxanide entrapped into phosphatidylserine-nanoliposomes: An experimental study. Chemico-Biological Interactions, 332, 109296. https://doi.org/10.1016/j.cbi.2020.109296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lopes, M. S., de Souza Pietra, R. C., Borgati, T. F., Romeiro, C. F., Junior, P. A., Romanha, A. J., Alves, R. J., Souza-Fagundes, E. M., Fernandes, A. P., & de Oliveira, R. B. (2011). Synthesis and evaluation of the anti parasitic activity of aromatic nitro compounds. European Journal of Medicinal Chemistry, 46(11), 5443–5447. https://doi.org/10.1016/j.ejmech.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  19. Mendonca, D. B. D., Silva, R. E. C., Palace-Berl, F., Takakura, C. F., Soares, S. R. C., Braz, L. M. A., Tavares, L. C., & Lindoso, J. A. L. (2019). Nitro-Heterocyclic compounds induce apoptosis-like effects in Leishmania (L.) amazonensis promastigotes. Journal of Venomous Animals and Toxins including Tropical Diseases, 25, e144418. https://doi.org/10.1590/1678-9199-JVATITD-1444-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chan-Bacab, M. J., Hernandez-Nunez, E., & Navarrete-Vazquez, G. (2009). Nitazoxanide, tizoxanide and a new analogue [4-nitro-N-(5-nitro-1,3-thiazol-2-yl)benzamide; NTB] inhibit the growth of kinetoplastid parasites (Trypanosoma cruzi and Leishmania mexicana) in vitro. Journal of Antimicrobial Chemotherapy, 63(6), 1292–1293. https://doi.org/10.1093/jac/dkp117

    Article  CAS  PubMed  Google Scholar 

  21. de Oliveira, I. M., Henriques, J. A., & Bonatto, D. (2007). In silico identification of a new group of specific bacterial and fungal nitroreductases-like proteins. Biochemical and Biophysical Research Communications, 355(4), 919–925. https://doi.org/10.1016/j.bbrc.2007.02.049

    Article  CAS  PubMed  Google Scholar 

  22. Wilkinson, S. R., Taylor, M. C., Horn, D., Kelly, J. M., & Cheeseman, I. (2008). A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proceedings of the National Academy of Sciences USA, 105(13), 5022–5027. https://doi.org/10.1073/pnas.0711014105

    Article  Google Scholar 

  23. Muller, J., Wastling, J., Sanderson, S., Muller, N., & Hemphill, A. (2007). A novel Giardia lamblia nitroreductase, GlNR1, interacts with nitazoxanide and other thiazolides. Antimicrobial Agents and Chemotherapy, 51(6), 1979–1986. https://doi.org/10.1128/AAC.01548-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hall, B. S., Bot, C., & Wilkinson, S. R. (2011). Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. Journal of Biological Chemistry, 286(15), 13088–13095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muller, J., Rout, S., Leitsch, D., Vaithilingam, J., Hehl, A., & Muller, N. (2015). Comparative characterisation of two nitroreductases from Giardia lamblia as potential activators of nitro compounds. International Journal for Parasitology: Drugs and Drug Resistance, 5(2), 37–43. https://doi.org/10.1016/j.ijpddr.2015.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moreno, S. N., Mason, R. P., & Docampo, R. (1984). Reduction of nifurtimox and nitrofurantoin to free radical metabolites by rat liver mitochondria: Evidence of an outer membrane-located nitroreductase. Journal of Biological Chemistry, 259(10), 6298–6305. https://doi.org/10.1016/S0021-9258(20)82140-1

    Article  CAS  PubMed  Google Scholar 

  27. Nishihara, K., Kanemori, M., Kitagawa, M., Yanagi, H., & Yura, T. (1998). Chaperone coexpression plasmids: Differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2 in Escherichia coli. Applied and Environmental Microbiology, 64(5), 1694–1699. https://doi.org/10.1128/AEM.64.5.1694-1699.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Studier, F. W. (2005). Protein production by auto-induction in high density shaking cultures. Protein Expression and Purification, 41(1), 207–234. https://doi.org/10.1016/j.pep.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  29. Gerlt, J. A., Bouvier, J. T., Davidson, D. B., Imker, H. J., Sadkhin, B., Slater, D. R., & Whalen, K. L. (1854). (2015) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks. Biochimica et Biophysica Acta, 8, 1019–1037. https://doi.org/10.1016/j.bbapap.2015.04.015

    Article  CAS  Google Scholar 

  30. Shannon, P. T., Grimes, M., Kutlu, B., Bot, J. J., & Galas, D. J. (2013). RCytoscape: Tools for exploratory network analysis. BMC Bioinformatics, 14, 217–225. https://doi.org/10.1186/1471-2105-14-217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huerta-Cepas, J., Serra, F., & Bork, P. (2016). ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Molecular Biology and Evolution, 33(6), 1635–1638. https://doi.org/10.1093/molbev/msw046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hecht, H. J., Erdmann, H., Park, H. J., Sprinzl, M., & Schmid, R. D. (1995). Crystal structure of NADH oxidase from Thermus thermophilus. Natural Structural Biology, 2(12), 1109–1114. https://doi.org/10.1038/nsb1295-1109

    Article  CAS  Google Scholar 

  35. Hall, B. S., & Wilkinson, S. R. (2012). Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrobial Agents and Chemotherapy, 56(1), 115–123. https://doi.org/10.1128/AAC.05135-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hall, B. S., Meredith, E. L., & Wilkinson, S. R. (2012). Targeting the substrate preference of a type I nitroreductase to develop antitrypanosomal quinone-based prodrugs. Antimicrobial Agents and Chemotherapy, 56(11), 5821–5830. https://doi.org/10.1128/AAC.01227-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haynes, C. A., Koder, R. L., Miller, A. F., & Rodgers, D. W. (2002). Structures of nitroreductase in three states: Effects of inhibitor binding and reduction. Journal of Biological Chemistry, 277(13), 11513–11520. https://doi.org/10.1074/jbc.M111334200

    Article  CAS  PubMed  Google Scholar 

  38. Kobori, T., Sasaki, H., Lee, W. C., Zenno, S., Saigo, K., Murphy, M. E., & Tanokura, M. (2001). Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: Alteration of pyridine nucleotide binding by a single amino acid substitution. Journal of Biological Chemistry, 276(4), 2816–2823. https://doi.org/10.1074/jbc.M002617200

    Article  CAS  PubMed  Google Scholar 

  39. Piano, V., Palfey, B. A., & Mattevi, A. (2017). Flavins as covalent catalysts: New mechanisms emerge. Trends in Biochemical Sciences, 42(6), 457–469. https://doi.org/10.1016/j.tibs.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  40. Pimviriyakul, P., & Chaiyen, P. (2020). Overview of flavin-dependent enzymes. In P. Chaiyen & F. Tamanoi (Eds.), The Enzymes (Vol. 47, pp. 1–36). Elsevier. https://doi.org/10.1016/bs.enz.2020.06.006

    Chapter  Google Scholar 

  41. Watanabe, M., Nishino, T., Takio, K., Sofuni, T., & Nohmi, T. (1998). Purification and characterization of wild-type and mutant “classical” nitroreductases of Salmonella typhimurium mutation greatly diminishes binding of FMN to the nitroreductase of S. typhimurium. Journal of Biological Chemistry, 273(37), 23922–23928. https://doi.org/10.1074/jbc.273.37.23922

    Article  CAS  PubMed  Google Scholar 

  42. Valiauga, B., Williams, E. M., Ackerley, D. F., & Cenas, N. (2017). Reduction of quinones and nitroaromatic compounds by Escherichia coli nitroreductase A (NfsA): Characterization of kinetics and substrate specificity. Archives of Biochemistry and Biophysics, 614, 14–22. https://doi.org/10.1016/j.abb.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  43. Zenno, S., Koike, H., Kumar, A. N., Jayaraman, R., Tanokura, M., & Saigo, K. (1996). Biochemical characterization of NfsA, the Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase. Journal of Bacteriology, 178(15), 4508–4514. https://doi.org/10.1128/jb.178.15.4508-4514.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koder, R. L., & Miller, A. F. (1998). Steady-state kinetic mechanism, stereospecificity, substrate and inhibitor specificity of Enterobacter cloacae nitroreductase. Biochimica et Biophysica Acta, 1387(1–2), 395–405. https://doi.org/10.1016/s0167-4838(98)00151-4

    Article  CAS  PubMed  Google Scholar 

  45. Pitsawong, W., Hoben, J. P., & Miller, A. F. (2014). Understanding the broad substrate repertoire of nitroreductase based on its kinetic mechanism. Journal of Biological Chemistry, 289(22), 15203–15214. https://doi.org/10.1074/jbc.M113.547117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perez-Reinado, E., Roldan, M. D., Castillo, F., & Moreno-Vivian, C. (2008). The NprA nitroreductase required for 2,4-dinitrophenol reduction in Rhodobacter capsulatus is a dihydropteridine reductase. Environmental Microbiology, 10(11), 3174–3183. https://doi.org/10.1111/j.1462-2920.2008.01585.x

    Article  CAS  PubMed  Google Scholar 

  47. Yanto, Y., Hall, M., & Bommarius, A. S. (2010). Nitroreductase from Salmonella typhimurium: Characterization and catalytic activity. Organic & Biomolecular Chemistry, 8(8), 1826–1832. https://doi.org/10.1039/b926274a

    Article  CAS  Google Scholar 

  48. Yang, Y., Lin, J., & Wei, D. (2016). Heterologous overexpression and biochemical characterization of a nitroreductase from Gluconobacter oxydans 621H. Molecular Biotechnology, 58(6), 428–440. https://doi.org/10.1007/s12033-016-9942-1

    Article  CAS  PubMed  Google Scholar 

  49. Yang, J., Bai, J., Qu, M., Xie, B., & Yang, Q. (2019). Biochemical characteristics of a nitroreductase with diverse substrate specificity from Streptomyces mirabilis DUT001. Biotechnology and Applied Biochemistry, 66(1), 33–42. https://doi.org/10.1002/bab.1692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant from Kasetsart University Research and Development Institute; KURDI (FF (KU)4.65) (to P. Pimviriyakul), the grant from the Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation through grant RGNS 64-030 (to P. Pimviriyakul), the grant from Faculty of Science, Kasetsart University (to P. Pimviriyakul and Y. Kapaothong), and the grant from Development and Promotion of Science and Technology Talents Project (DPST) Scholarship (to T. Tangsupatawat). We thank Assist. Prof. Dr.Teerasak E-Kobon’s laboratory for the gene information.

Author information

Authors and Affiliations

Authors

Contributions

PP: Project administration, Supervision, Conceptualization, Methodology, Investigation, Data analysis, Writing—Original Draft, Review & Editing, Funding acquisition. YK and TT: Methodology, Data curation, Data analysis.

Corresponding author

Correspondence to Panu Pimviriyakul.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1138 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimviriyakul, P., Kapaothong, Y. & Tangsupatawat, T. Heterologous Expression and Characterization of a Full-length Protozoan Nitroreductase from Leishmania orientalis isolate PCM2. Mol Biotechnol 65, 556–569 (2023). https://doi.org/10.1007/s12033-022-00556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00556-3

Keywords

Navigation