Skip to main content

Advertisement

Log in

Recent Advances and Therapeutic Strategies Using CRISPR Genome Editing Technique for the Treatment of Cancer

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

CRISPR genome editing technique has the potential to target cancer cells in a precise manner. The latest advancements have helped to address one of the prominent concerns about this strategy which is the off-target integrations observed with dsDNA and have resulted in more studies being carried out for potentially safer and more targeted gene therapy, so as to make it available for the clinical trials in order to effectively treat cancer. CRISPR screens offer great potential for the high throughput investigation of the gene functionality in various tumors. It extends its capability to identify the tumor growth essential genes, therapeutic resistant genes, and immunotherapeutic responses. CRISPR screens are mostly performed in in vitro models, but latest advancements focus on developing in vivo models to view cancer progression in animal models. It also allows the detection of factors responsible for tumorigenesis. In CRISPR screens key parameters are optimized in order to meet proficient gene targeting efficiencies. It also detects various molecular effectors required for gene regulation in different cancers, essential pathways which modulate cytotoxicity to immunotherapy in cancer cells, important genes which contribute to cancer cell survival in hypoxic states and modulate cancer long non-coding RNAs. The current review focuses on the recent developments in the therapeutic application of CRISPR technology for cancer therapy. Furthermore, the associated challenges and safety concerns along with the various strategies that can be implemented to overcome these drawbacks has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NHEJ:

Non-homologous end joining

HDR:

Homology directed repair

ODN:

Oligodeoxynucleotides

ZFNs:

Zinc-finger nucleases

TALENs:

Transcription activator-like effector nucleases

CSCs:

Cancer stem cells

Oct2:

Organic cation transporter 2

Sox2:

SRY-Box Transcription Factor 2

STAT3:

Signal transducer and activator of transcription 3

EMT:

Epithelial-mesenchymal transition

ChIP:

Chromatin immunoprecipitation

Csn2:

Casein Beta

crRNA:

CRISPR RNAs

tracrRNA:

Trans-activating crispr RNA

KHOS:

Angiogenic and non-angiogenic human osteosarcoma cells

U-2OS:

Human Bone Osteosarcoma Epithelial Cells

EWSR1:

Ewing sarcoma breakpoint region 1

FLI1:

Friend leukemia integration 1 transcription factor

MCF-7:

Michigan Cancer Foundation-7

CTCF:

CCCTC-binding factor

LNCaP:

Lymph Node Carcinoma of the prostate

KIF4A:

Kinesin Family Member 4A

WDR62:

WD Repeat Domain 62

AGS:

Adenocarcinoma gastric cell line.

SGC:

Sebaceous gland carcinoma

HEK293:

Human Embryonic Kidney 293 cells)

LGALS2:

Galectin 2

AOM/DSS:

Azoxymethane /Dextran Sodium Sulfate

Pten:

Phosphatase and tensin homolog

Usp-7:

Ubiquitin specific protease 7

PTPM1:

Protein Tyrosine Phosphatase Mitochondrial 1

NF-1:

Neurofibromin 1

DUSP9:

Dual Specificity Phosphatase 9

MAPK:

Mitogen-activated protein kinase

FOXO3:

Forkhead box O3

mTOR:

Mammalian target of rapamycin

TGF-β:

Transforming growth factor-beta

NRAS:

Neuroblastoma RAS viral oncogene homolog

MEK:

Mitogen-activated extracellular signal-regulated kinase

SOCS3:

Suppressor of cytokine signaling 3

USP8:

Ubiquitin Specific Peptidase 8

FANCA:

Fanconi anemia, complementation group A

MGMT:

O6-Methylguanine-DNA-methyltransferase

GDSC:

Genomics of Drug Sensitivity in Cancer

CTRP:

Cancer Therapeutics Response Portal

PI3k:

Phosphoinositide 3-kinase

HER-2:

Human epidermal growth factor receptor 2

LRP8:

Low-density lipoprotein receptor-related protein 8

FGFR2:

Fibroblast growth factor receptor 2

MUC1:

Mucin 1

References

  1. Loftus, L. V., Amend, S. R., & Pienta, K. J. (2022). Interplay between cell death and cell proliferation reveals new strategies for cancer therapy. International journal of molecular sciences, 23(9), 4723.

    Article  CAS  Google Scholar 

  2. Liu, Q., Wang, C., Zheng, Y., Zhao, Y., Wang, Y., Hao, J., Zhao, X., Yi, K., Shi, L., Kang, C., & Liu, Y. (2020). Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials, 258, 120275.

    Article  CAS  Google Scholar 

  3. Cong, L., Ran, F., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 339(6121), 819–823.

    Article  CAS  Google Scholar 

  4. Jamehdor, S., Zaboli, K. A., Naserian, S., Thekkiniath, J., Omidy, H. A., Teimoori, A., Johari, B., Taromchi, A. H., Sasano, Y., & Kaboli, S. (2020). An overview of applications of CRISPR-Cas technologies in biomedical engineering. Folia Histochemica et Cytobiologica, 58(3), 163–173.

    Article  CAS  Google Scholar 

  5. Li, L., Hu, S., & Chen, X. (2018). Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials, 171, 207–218.

    Article  CAS  Google Scholar 

  6. Zhao, Z., Li, C., Tong, F., Deng, J., Huang, G., & Sang, Y. (2021). Review of applications of CRISPR-Cas9 gene-editing technology in cancer research. Biological Procedures Online, 23(1), 1–13.

    Article  Google Scholar 

  7. Rad, S. M. A. H., Langroudi, L., Kouhkan, F., Yazdani, L., Koupaee, A. N., Asgharpour, S., Shojaei, Z., Bamdad, T., & Arefian, E. (2015). Transcription factor decoy: A pre-transcriptional approach for gene downregulation purpose in cancer. Tumor Biology, 36(7), 4871–4881.

    Article  CAS  Google Scholar 

  8. Bigdelou, Z., Mortazavi, Y., Saltanatpour, Z., Asadi, Z., Kadivar, M., & Johari, B. (2020). Role of Oct4–Sox2 complex decoy oligodeoxynucleotides strategy on reverse epithelial to mesenchymal transition (EMT) induction in HT29-ShE encompassing enriched cancer stem-like cells. Molecular Biology Reports, 47(3), 1859–1869.

    Article  CAS  Google Scholar 

  9. Johari, B., Rezaeejam, H., Moradi, M., Taghipour, Z., Saltanatpour, Z., Mortazavi, Y., & Nasehi, L. (2020). Increasing the colon cancer cells sensitivity toward radiation therapy via application of Oct4–Sox2 complex decoy oligodeoxynucleotides. Molecular Biology Reports, 47(9), 6793–6805.

    Article  CAS  Google Scholar 

  10. Rahmati, M., Johari, B., Kadivar, M., Rismani, E., & Mortazavi, Y. (2020). Suppressing the metastatic properties of the breast cancer cells using STAT3 decoy oligodeoxynucleotides: A promising approach for eradication of cancer cells by differentiation therapy. Journal of Cellular Physiology, 235(6), 5429–5444.

    Article  CAS  Google Scholar 

  11. Hille, F., & Charpentier, E. (2016). CRISPR-Cas: Biology, mechanisms and relevance. Philosophical Transactions of The Royal Society B: Biological Sciences, 371(1707), 20150496.

    Article  Google Scholar 

  12. Costa, J. R., Bejcek, B. E., McGee, J. E., et al. (2017). Genome editing using engineered nucleases and their use in genomic screening. In S. Markossian, A. Grossman, K. Brimacombe, et al. (Eds.), Assay Guidance Manual. National Center for Biotechnology Information.

    Google Scholar 

  13. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709–1712.

    Article  CAS  Google Scholar 

  14. Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J., Charpentier, E., Haft, D. H., & Horvath, P. (2015). An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 13(11), 722–736.

    Article  CAS  Google Scholar 

  15. Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J., Wolf, Y. I., Yakunin, A. F., & Van Der Oost, J. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 9(6), 467–477.

    Article  CAS  Google Scholar 

  16. Babu, M., Beloglazova, N., Flick, R., Graham, C., Skarina, T., Nocek, B., Gagarinova, A., Pogoutse, O., Brown, G., Binkowski, A., & Phanse, S. (2011). A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair. Molecular microbiology, 79(2), 484–502.

    Article  CAS  Google Scholar 

  17. Wiedenheft, B., Zhou, K., Jinek, M., Coyle, S. M., Ma, W., & Doudna, J. A. (2009). Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure, 17(6), 904–912.

    Article  CAS  Google Scholar 

  18. Beloglazova, N., Brown, G., Zimmerman, M. D., Proudfoot, M., Makarova, K. S., Kudritska, M., Kochinyan, S., Wang, S., Chruszcz, M., Minor, W., & Koonin, E. V. (2008). A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. Journal of Biological Chemistry, 283(29), 20361–20371.

    Article  CAS  Google Scholar 

  19. Yosef, I., Goren, M. G., & Qimron, U. (2012). Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic acids research, 40(12), 5569–5576.

    Article  CAS  Google Scholar 

  20. Wei, Y., Chesne, M. T., Terns, R. M., & Terns, M. P. (2015). Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic acids research, 43(3), 1749–1758.

    Article  CAS  Google Scholar 

  21. McGinn, J., & Marraffini, L. (2018). Molecular mechanisms of CRISPR–Cas spacer acquisition. Nature Reviews Microbiology, 17(1), 7–12.

    Article  Google Scholar 

  22. Li, M., Wang, R., Zhao, D., & Xiang, H. (2014). Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic acids research, 42(4), 2483–2492.

    Article  CAS  Google Scholar 

  23. Vorontsova, D., Datsenko, K. A., Medvedeva, S., Bondy-Denomy, J., Savitskaya, E. E., Pougach, K., Logacheva, M., Wiedenheft, B., Davidson, A. R., Severinov, K., & Semenova, E. (2015). Foreign DNA acquisition by the IF CRISPR–Cas system requires all components of the interference machinery. Nucleic acids research, 43(22), 10848–10860.

    Article  CAS  Google Scholar 

  24. Heler, R., Samai, P., Modell, J. W., Weiner, C., Goldberg, G. W., Bikard, D., & Marraffini, L. A. (2015). Cas9 specifies functional viral targets during CRISPR–Cas adaptation. Nature, 519(7542), 199–202.

    Article  CAS  Google Scholar 

  25. Wei, Y., Terns, R. M., & Terns, M. P. (2015). Cas9 function and host genome sampling in Type II-A CRISPR–Cas adaptation. Genes & development, 29(4), 356–361.

    Article  CAS  Google Scholar 

  26. Mojica, F., Díez-Villaseñor, C., García-Martínez, J., & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155(3), 733–740.

    Article  CAS  Google Scholar 

  27. Swarts, D. C., Mosterd, C., Van Passel, M. W., & Brouns, S. J. (2012). CRISPR interference directs strand specific spacer acquisition. PLoS ONE, 7(4), e35888.

    Article  CAS  Google Scholar 

  28. Datsenko, K. A., Pougach, K., Tikhonov, A., Wanner, B. L., Severinov, K., & Semenova, E. (2012). Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nature communications, 3(1), 1–7.

    Article  Google Scholar 

  29. Richter, C., Dy, R. L., McKenzie, R. E., Watson, B. N., Taylor, C., Chang, J. T., McNeil, M. B., Staals, R. H., & Fineran, P. C. (2014). Priming in the Type IF CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic acids research, 42(13), 8516–8526.

    Article  CAS  Google Scholar 

  30. Redding, S., Sternberg, S. H., Marshall, M., Gibb, B., Bhat, P., Guegler, C. K., Wiedenheft, B., Doudna, J. A., & Greene, E. C. (2015). Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell, 163(4), 854–865.

    Article  CAS  Google Scholar 

  31. Carte, J., Wang, R., Li, H., Terns, R. M., & Terns, M. P. (2008). Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes & development, 22(24), 3489–3496.

    Article  CAS  Google Scholar 

  32. Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K., & Doudna, J. A. (2010). Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science, 329(5997), 1355–1358.

    Article  CAS  Google Scholar 

  33. Garside, E. L., Schellenberg, M. J., Gesner, E. M., Bonanno, J. B., Sauder, J. M., Burley, S. K., Almo, S. C., Mehta, G., & MacMillan, A. M. (2012). Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases. RNA, 18(11), 2020–2028.

    Article  CAS  Google Scholar 

  34. Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., & Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471(7340), 602–607.

    Article  CAS  Google Scholar 

  35. Marraffini, L., & Sontheimer, E. (2010). CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Reviews Genetics, 11(3), 181–190.

    Article  CAS  Google Scholar 

  36. Hale, C. R., Zhao, P., Olson, S., Duff, M. O., Graveley, B. R., Wells, L., Terns, R. M., & Terns, M. P. (2009). RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 139(5), 945–956.

    Article  CAS  Google Scholar 

  37. Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A., & Charpentier, E. (2016). The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 532(7600), 517–521.

    Article  CAS  Google Scholar 

  38. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., Van Der Oost, J., Regev, A., & Koonin, E. V. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163(3), 759–771.

    Article  CAS  Google Scholar 

  39. Marraffini, L. A., & Sontheimer, E. J. (2010). Self-versus non-self-discrimination during CRISPR RNA-directed immunity. Nature, 463(7280), 568–571.

    Article  CAS  Google Scholar 

  40. Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., Dickman, M. J., Makarova, K. S., Koonin, E. V., & Van Der Oost, J. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891), 960–964.

    Article  CAS  Google Scholar 

  41. Westra, E. R., van Erp, P. B., Künne, T., Wong, S. P., Staals, R. H., Seegers, C. L., Bollen, S., Jore, M. M., Semenova, E., Severinov, K., & de Vos, W. M. (2012). CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Molecular cell, 46(5), 595–605.

    Article  CAS  Google Scholar 

  42. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.

    Article  CAS  Google Scholar 

  43. Chow, R., & Chen, S. (2018). Cancer CRISPR screens in vivo. Trends in Cancer, 4(5), 349–358.

    Article  CAS  Google Scholar 

  44. Xue, H. Y., Ji, L. J., Gao, A. M., Liu, P., He, J. D., & Lu, X. J. (2016). CRISPR-Cas9 for medical genetic screens: Applications and future perspectives. Journal of Medical Genetics, 53, 91–97.

    Article  CAS  Google Scholar 

  45. Schuster, A., Erasimus, H., Fritah, S., Nazarov, P. V., van Dyck, E., Niclou, S. P., & Golebiewska, A. (2019). RNAi/CRISPR screens: From a pool to a valid hit. Trends in Biotechnology, 37, 38–55.

    Article  CAS  Google Scholar 

  46. He, C., Han, S., Chang, Y., Wu, M., Zhao, Y., Chen, C., & Chu, X. (2021). CRISPR screen in cancer: Status quo and future perspectives. American Journal of Cancer research, 11(4), 1031–1050.

    CAS  Google Scholar 

  47. Kuhn, M., Santinha, A., & Platt, R. (2021). Moving from in vitro to in vivo CRISPR screens. Gene And Genome Editing, 2, 100008.

    Article  CAS  Google Scholar 

  48. Boutros, M., & Ahringer, J. (2008). The art and design of genetic screens: RNA interference. Nature Reviews Genetics, 9(7), 554–566.

    Article  CAS  Google Scholar 

  49. Grimm, S. (2004). The art and design of genetic screens: Mammalian culture cells. Nature Reviews Genetics, 5(3), 179–189.

    Article  CAS  Google Scholar 

  50. Shalem, O., Sanjana, N., & Zhang, F. (2015). High-throughput functional genomics using CRISPR–Cas9. Nature Reviews Genetics, 16(5), 299–311.

    Article  CAS  Google Scholar 

  51. Sharma, G., Sharma, A., Bhattacharya, M., Lee, S., & Chakraborty, C. (2021). CRISPR-Cas9: A preclinical and clinical perspective for the treatment of human diseases. Molecular Therapy, 29(2), 571–586.

    Article  CAS  Google Scholar 

  52. Feng, Y., Sassi, S., Shen, J., Yang, X., Gao, Y., Osaka, E., et al. (2014). Targeting Cdk11 in osteosarcoma cells using the CRISPR-cas9 system. Journal Of Orthopaedic Research, 33(2), 199–207.

    Article  Google Scholar 

  53. Cervera, S. T., Rodríguez-Martín, C., Fernández-Tabanera, E., Melero-Fernández de Mera, R. M., Morin, M., Fernández-Peñalver, S., Iranzo-Martínez, M., Amhih-Cardenas, J., García-García, L., González-González, L., & Moreno-Pelayo, M. A. (2021). Therapeutic potential of EWSR1–FLI1 inactivation by CRISPR/Cas9 in ewing sarcoma. Cancers, 13(15), 3783.

    Article  CAS  Google Scholar 

  54. DeSantis, C., Ma, J., Goding Sauer, A., Newman, L., & Jemal, A. (2017). Breast cancer statistics, 2017, racial disparity in mortality by state. CA: A Cancer Journal For Clinicians., 67(6), 439–448.

    Google Scholar 

  55. Wang, Y., Zhang, T., Kwiatkowski, N., Abraham, B. J., Lee, T. I., Xie, S., Yuzugullu, H., Von, T., Li, H., Lin, Z., & Stover, D. G. (2015). CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell, 163(1), 174–186.

    Article  CAS  Google Scholar 

  56. Patel, H., Abduljabbar, R., Lai, C. F., Periyasamy, M., Harrod, A., Gemma, C., Steel, J. H., Patel, N., Busonero, C., Jerjees, D., & Remenyi, J. (2016). Expression of CDK7, Cyclin H, and MAT1 Is elevated in breast cancer and is prognostic in estrogen receptor-positive breast CancerCDK7 expression in breast cancer. Clinical Cancer Research, 22(23), 5929–5938.

    Article  CAS  Google Scholar 

  57. Al-Mulhim, F., Alqosaibi, A. I., Al-Muhnna, A., Farid, K., Abdel-Ghany, S., Rizk, H., Prince, A. B., Isichei, A., & Sabit, H. (2021). CRISPR/Cas9-mediated activation of CDH1 suppresses metastasis of breast cancer in rats. Electronic Journal of Biotechnology, 53, 54–60.

    Article  CAS  Google Scholar 

  58. Elman, J., Ni, T., Mengwasser, K., Jin, D., Wronski, A., Elledge, S., & Kuperwasser, C. (2019). Identification of FUBP1 as a long tail cancer driver and widespread regulator of tumor suppressor and oncogene alternative splicing. Cell Reports, 28(13), 3435-3449.e5.

    Article  CAS  Google Scholar 

  59. Provance, O. K., Geanes, E. S., Lui, A. J., Roy, A., Holloran, S. M., Gunewardena, S., Hagan, C. R., Weir, S., & Lewis-Wambi, J. (2021). Disrupting interferon-alpha and NF-kappaB crosstalk suppresses IFITM1 expression attenuating triple-negative breast cancer progression. Cancer letters, 514, 12–29.

    Article  CAS  Google Scholar 

  60. Emadi, F., Teo, T., Rahaman, M., & Wang, S. (2020). CDK12: A potential therapeutic target in cancer. Drug Discovery Today, 25(12), 2257–2267.

    Article  CAS  Google Scholar 

  61. Reimers, M. A., Yip, S. M., Zhang, L., Cieslik, M., Dhawan, M., Montgomery, B., Wyatt, A. W., Chi, K. N., Small, E. J., Chinnaiyan, A. M., & Alva, A. S. (2020). Clinical outcomes in cyclin-dependent kinase 12 mutant advanced prostate cancer. European urology, 77(3), 333–341.

    Article  CAS  Google Scholar 

  62. Lei, H., Wang, Z., Jiang, D., Liu, F., Liu, M., Lei, X., Yang, Y., He, B., Yan, M., Huang, H., & Liu, Q. (2021). CRISPR screening identifies CDK12 as a conservative vulnerability of prostate cancer. Cell Death & Disease, 12(8), 1–11.

    Article  Google Scholar 

  63. Ahmed, M., Soares, F., Xia, J. H., Yang, Y., Li, J., Guo, H., Su, P., Tian, Y., Lee, H. J., Wang, M., & Akhtar, N. (2021). CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nature communications, 12(1), 1–15.

    Article  CAS  Google Scholar 

  64. Das, R., Sjöström, M., Shrestha, R., Yogodzinski, C., Egusa, E. A., Chesner, L. N., Chen, W. S., Chou, J., Dang, D. K., Swinderman, J. T., & Ge, A. (2021). An integrated functional and clinical genomics approach reveals genes driving aggressive metastatic prostate cancer. Nature Communications, 12(1), 1–12.

    Article  CAS  Google Scholar 

  65. Zhang, Y., Peia, J., Shib, S., Guoc, X., Cuid, G., Lie, Y., Zhang, H., & Hu, W. (2019). CRISPR/Cas9-mediated knockout of the PDEF gene inhibits migration and invasion of human gastric cancer AGS cells. Biomedicine & Pharmacotherapy, 111, 76–85.

    Article  CAS  Google Scholar 

  66. Haghighi, N., Doosti, A., & Kiani, J. (2021). Evaluation of CRISPR/Cas9 system effects on knocking out NEAT1 gene in AGS gastric cancer cell line with therapeutic perspective. Journal of Gastrointestinal Cancer. https://doi.org/10.1007/s12029-021-00669-z

    Article  Google Scholar 

  67. Shi, M., Wang, C., Ji, J., Cai, Q., Zhao, Q., Xi, W., & Zhang, J. (2022). CRISPR/Cas9-mediated knockout of SGLT1 inhibits proliferation and alters metabolism of gastric cancer cells. Cellular Signalling, 90, 110192.

    Article  CAS  Google Scholar 

  68. Su, S., Zou, Z., Chen, F., Ding, N., Du, J., Shao, J., Li, L., Fu, Y., Hu, B., Yang, Y., & Sha, H. (2017). CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology, 6(1), e1249558.

    Article  Google Scholar 

  69. Li, H., Zhao, L., Lau, Y., Zhang, C., & Han, R. (2020). Genome-wide CRISPR screen identifies LGALS2 as an oxidative stress-responsive gene with an inhibitory function on colon tumor growth. Oncogene, 40(1), 177–188.

    Article  Google Scholar 

  70. Chen, Z., Wu, J., Liu, B., Zhang, G., Wang, Z., Zhang, L., Wang, K., Fan, Z., & Zhu, P. (2021). Identification of cis-HOX-HOXC10 axis as a therapeutic target for colorectal tumor-initiating cells without APC mutations. Cell Reports, 36(4), 109431.

    Article  CAS  Google Scholar 

  71. Michels, E. B., Mosa, H. M., Streibl, I. B., Zhan, T., Menche, C., Ardat, A. K., Darvishi, T., Czlonka, E., Wagner, S., Winter, J., Medyouf, H., Boutros, M., & Farin, F. H. (2020). Pooled in vitro and in vivo CRISPR-Cas9 screening identifies tumor suppressors in human colon organoids. Cell Stem Cell, 26, 782–792.

    Article  CAS  Google Scholar 

  72. Veo, B., Danis, E., Pierce, A., Wang, D., Fosmire, S., Sullivan, K. D., Joshi, M., Khanal, S., Dahl, N., Karam, S., & Serkova, N. (2021). Transcriptional control of DNA repair networks by CDK7 regulates sensitivity to radiation in MYC-driven medulloblastoma. Cell Reports, 35(4), 109013.

    Article  CAS  Google Scholar 

  73. Zhan, M., Sun, X., Liu, J., Li, Y., Li, Y., He, X., Zhou, Z., & Lu, L. (2017). Usp7 promotes medulloblastoma cell survival and metastasis by activating Shh pathway. Biochemical and biophysical research communications, 484(2), 429–434.

    Article  CAS  Google Scholar 

  74. Bao, M. H. R., Yang, C., Tse, A. P. W., Wei, L., Lee, D., Zhang, M. S., Goh, C. C., Chiu, D. K. C., Yuen, V. W. H., Law, C. T., & Chin, W. C. (2021). Genome-wide CRISPR-Cas9 knockout library screening identified PTPMT1 in cardiolipin synthesis is crucial to survival in hypoxia in liver cancer. Cell Reports, 34(4), 108676.

    Article  CAS  Google Scholar 

  75. Lu, Y., Shen, H., Huang, W., He, S., Chen, J., Zhang, D., Shen, Y., & Sun, Y. (2021). Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance. Cell death discovery, 7(1), 1–12.

    Article  CAS  Google Scholar 

  76. Abraham, C. G., Ludwig, M. P., Andrysik, Z., Pandey, A., Joshi, M., Galbraith, M. D., Sullivan, K. D., & Espinosa, J. M. (2018). ΔNp63α suppresses TGFB2 expression and RHOA activity to drive cell proliferation in squamous cell carcinomas. Cell reports, 24(12), 3224–3236.

    Article  CAS  Google Scholar 

  77. Takahashi, N., Cho, P., Selfors, L. M., Kuiken, H. J., Kaul, R., Fujiwara, T., Harris, I. S., Zhang, T., Gygi, S. P., & Brugge, J. S. (2020). 3D culture models with CRISPR screens reveal hyperactive NRF2 as a prerequisite for spheroid formation via regulation of proliferation and ferroptosis. Molecular cell, 80(5), 828–844.

    Article  CAS  Google Scholar 

  78. Wohlhieter, C. A., Richards, A. L., Uddin, F., Hulton, C. H., Quintanal-Villalonga, À., Martin, A., de Stanchina, E., Bhanot, U., Asher, M., Shah, N. S., & Hayatt, O. (2020). Concurrent mutations in STK11 and KEAP1 promote ferroptosis protection and SCD1 dependence in lung cancer. Cell reports, 33(9), 108444.

    Article  CAS  Google Scholar 

  79. Inturi, R., & Jemth, P. (2021). CRISPR/Cas9-based inactivation of human papillomavirus oncogenes E6 or E7 induces senescence in cervical cancer cells. Virology, 562, 92–102.

    Article  CAS  Google Scholar 

  80. Li, Z., Wang, B., Gu, S., Jiang, P., Sahu, A., Chen, C., et al. (2020). CRISPR Screens Identify Essential Cell Growth Mediators in BRAF Inhibitor-resistant Melanoma. Genomics, Proteomics & Bioinformatics, 18(1), 26–40.

    Article  Google Scholar 

  81. Nagler, A., Vredevoogd, D. W., Alon, M., Cheng, P. F., Trabish, S., Kalaora, S., Arafeh, R., Goldin, V., Levesque, M. P., Peeper, D. S., & Samuels, Y. (2020). A genome-wide CRISPR screen identifies FBXO42 involvement in resistance toward MEK inhibition in NRAS-mutant melanoma. Pigment cell & melanoma research, 33(2), 334–344.

    Article  CAS  Google Scholar 

  82. Palit, S. A., van Dorp, J., Vis, D., Lieftink, C., Linder, S., Beijersbergen, R., Bergman, A. M., Zwart, W., & van der Heijden, M. S. (2021). A kinome-centered CRISPR-Cas9 screen identifies activated BRAF to modulate enzalutamide resistance with potential therapeutic implications in BRAF-mutated prostate cancer. Scientific reports, 11(1), 1–8.

    Article  Google Scholar 

  83. Chen, J., Huang, Y., Tang, Z., Li, M., Ling, X., Liao, J., Zhou, X., Fang, S., Zhao, H., Zhong, W., & Yuan, X. (2021). Genome-Scale CRISPR-Cas9 transcriptional activation screening in metformin resistance related gene of prostate cancer. Frontiers in Cell and Developmental Biology, 8, 616332.

    Article  Google Scholar 

  84. MacLeod, G., Bozek, D. A., Rajakulendran, N., Monteiro, V., Ahmadi, M., Steinhart, Z., Kushida, M. M., Yu, H., Coutinho, F. J., Cavalli, F. M., & Restall, I. (2019). Genome-wide CRISPR-Cas9 screens expose genetic vulnerabilities and mechanisms of temozolomide sensitivity in glioblastoma stem cells. Cell reports, 27(3), 971–986.

    Article  CAS  Google Scholar 

  85. Oberlick, E. M., Rees, M. G., Seashore-Ludlow, B., Vazquez, F., Nelson, G. M., Dharia, N. V., Weir, B. A., Tsherniak, A., Ghandi, M., Krill-Burger, J. M., & Meyers, R. M. (2019). Small-molecule and CRISPR screening converge to reveal receptor tyrosine kinase dependencies in pediatric rhabdoid tumors. Cell reports, 28(9), 2331–2344.

    Article  CAS  Google Scholar 

  86. Ayestaran, I., Galhoz, A., Spiegel, E., Sidders, B., Dry, J. R., Dondelinger, F., Bender, A., McDermott, U., Iorio, F., & Menden, M. P. (2020). Identification of intrinsic drug resistance and its biomarkers in High-throughput pharmacogenomic and CRISPR screens. Patterns, 1(5), 100065.

    Article  CAS  Google Scholar 

  87. Hou, J., Cao, X., Cheng, Y., & Wang, X. (2020). Roles of TP53 gene in the development of resistance to PI3K inhibitor resistances in CRISPR-Cas9-edited lung adenocarcinoma cells. Cell Biology and Toxicology, 36(5), 481–492.

    Article  CAS  Google Scholar 

  88. Shu, S., Wu, H. J., Jennifer, Y. G., Zeid, R., Harris, I. S., Jovanović, B., Murphy, K., Wang, B., Qiu, X., Endress, J. E., & Reyes, J. (2020). Synthetic lethal and resistance interactions with BET bromodomain inhibitors in triple-negative breast cancer. Molecular cell, 78(6), 1096–1113.

    Article  CAS  Google Scholar 

  89. Merino, D., Whittle, J. R., Vaillant, F., Serrano, A., Gong, J. N., Giner, G., Maragno, A. L., Chanrion, M., Schneider, E., Pal, B., & Li, X. (2017). Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Science translational medicine, 9(401), 7049.

    Article  Google Scholar 

  90. Cai, J., Chen, J., Wu, T., Cheng, Z., Tian, Y., Pu, C., Shi, W., Suo, X., Wu, X., & Zhang, K. (2020). Genome-scale CRISPR activation screening identifies a role of LRP8 in Sorafenib resistance in Hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 526(4), 1170–1176.

    Article  CAS  Google Scholar 

  91. Huang, S., Ma, Z., Zhou, Q., Wang, A., Gong, Y., Li, Z., Wang, S., Yan, Q., Wang, D., Hou, B., & Zhang, C. (2022). Genome-wide CRISPR/Cas9 library screening identified that dusp4 deficiency induces lenvatinib resistance in hepatocellular carcinoma. International Journal of Biological Sciences, 18(11), 4357–4371.

    Article  CAS  Google Scholar 

  92. Bester, A. C., Lee, J. D., Chavez, A., Lee, Y. R., Nachmani, D., Vora, S., Victor, J., Sauvageau, M., Monteleone, E., Rinn, J. L., & Provero, P. (2018). An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug resistance. Cell, 173(3), 649–664.

    Article  CAS  Google Scholar 

  93. Damnernsawad, A., Bottomly, D., Kurtz, S. E., Eide, C. A., McWeeney, S. K., Tyner, J. W., & Nechiporuk, T. (2022). A genome-wide CRISPR screen identifies regulators of MAPK and MTOR pathways that mediate resistance to sorafenib in acute myeloid leukemia. Haematologica, 107(1), 77.

    Article  CAS  Google Scholar 

  94. Chen, J., Bell, J., Lau, B., Whittaker, T., Stapleton, D., & Ji, H. (2019). A functional CRISPR/Cas9 screen identifies kinases that modulate FGFR inhibitor response in gastric cancer. Oncogenesis, 8(5), 1–9.

    Article  Google Scholar 

  95. Ning, G., Zhu, Q., Kang, W., Lee, H., Maher, L., Suh, Y. S., Michaud, M., Silva, M., Kwon, J. Y., Zhang, C., & Lee, C. (2021). A novel treatment strategy for lapatinib resistance in a subset of HER2-amplified gastric cancer. BMC Cancer, 21(1), 1–17.

    Article  Google Scholar 

  96. Yuan, F., Sun, M., Liu, H., & Qian, F. (2020). Albumin-conjugated drug is irresistible by single gene mutation of endocytic system: Verification by genome-wide CRISPR-Cas9 loss-of-function screens. Journal Of Controlled Release, 323, 311–320.

    Article  CAS  Google Scholar 

  97. Skripova, V., Serebriiskii, I., Abramova, Z., Astsaturov, I., & Kiyamova, R. (2017). CRISPR/Cas9 technique for identification of genes regulating oxaliplatin resistance of pancreatic cancer cell line. BioNanoScience, 7(1), 97–100.

    Article  Google Scholar 

  98. Liu, T., Li, Z., Zhang, Q., Bernstein, K. D. A., Lozano-Calderon, S., Choy, E., Hornicek, F. J., & Duan, Z. (2016). Targeting ABCB1 (MDR1) in multi-drug resistant osteosarcoma cells using the CRISPR-Cas9 system to reverse drug resistance. Oncotarget, 7(50), 83502.

    Article  Google Scholar 

  99. Xiao, Z., Wan, J., Nur, A. A., Dou, P., Mankin, H., Liu, T., & Ouyang, Z. (2018). Targeting CD44 by CRISPR-Cas9 in multi-drug resistant osteosarcoma cells. Cellular physiology and biochemistry, 51(4), 1879–1893.

    Article  CAS  Google Scholar 

  100. Liu, D., Zhao, X., Tang, A., Xu, X., Liu, S., Zha, L., Ma, W., Zheng, J., & Shi, M. (2020). CRISPR screen in mechanism and target discovery for cancer immunotherapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1874(1), 188378.

    Article  CAS  Google Scholar 

  101. Sharma, P., & Allison, J. P. (2015). The future of immune checkpoint therapy. Science, 348(6230), 56–61.

    Article  CAS  Google Scholar 

  102. Shiota, M., Fujimoto, J., Semba, T., Satoh, H., Yamamoto, T., & Mori, S. (1994). Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene, 9(6), 1567–1574.

    CAS  Google Scholar 

  103. Morris, S. W., Naeve, C., Mathew, P., James, P. L., Kirstein, M. N., Cui, X., & Witte, D. P. (1997). ALK, the chromosome 2 gene locus altered by the t (2; 5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene, 14(18), 2175–2188.

    Article  CAS  Google Scholar 

  104. Zhang, J., Song, Z., Wang, H., Lang, L., Yang, Y., Xiao, W., Webster, D., Wei, W., Barta, S., Kadin, M., Staudt, L., Nakagawa, M., & Yang, Y. (2019). A novel model of controlling PD-L1 expression in ALK+ anaplastic large cell lymphoma revealed by CRISPR screening. Blood, 134(2), 171–185.

    Article  CAS  Google Scholar 

  105. Majzner, R. G., & Mackall, C. L. (2018). Tumor antigen escape from CAR T-cell therapy. Cancer discovery, 8(10), 1219–1226.

    Article  CAS  Google Scholar 

  106. Iorgulescu, J. B., Braun, D., Oliveira, G., Keskin, D. B., & Wu, C. J. (2018). Acquired mechanisms of immune escape in cancer following immunotherapy. Genome Med., 10(1), 87.

    Article  CAS  Google Scholar 

  107. Brudno, J. N., Maric, I., Hartman, S. D., Rose, J. J., Wang, M., Lam, N., Stetler-Stevenson, M., Salem, D., Yuan, C., Pavletic, S., & Kanakry, J. A. (2018). T cells genetically modified to express an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. Journal of Clinical Oncology, 36(22), 2267.

    Article  CAS  Google Scholar 

  108. Cohen, A. D., Garfall, A. L., Stadtmauer, E. A., Melenhorst, J. J., Lacey, S. F., Lancaster, E., Vogl, D. T., Weiss, B. M., Dengel, K., Nelson, A., & Plesa, G. (2019). B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. The Journal of clinical investigation, 129(6), 2210–2221.

    Article  Google Scholar 

  109. Ramkumar, P., Abarientos, A., Tian, R., Seyler, M., Leong, J., Chen, M., Choudhry, P., Hechler, T., Shah, N., Wong, S., Martin, T., Wolf, J., Roybal, K., Pahl, A., Taunton, J., Wiita, A., & Kampmann, M. (2020). CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma. Blood Advances, 4(13), 2899–2911. https://doi.org/10.1182/bloodadvances.2019001346

    Article  CAS  Google Scholar 

  110. Dufva, O., Koski, J., Maliniemi, P., Ianevski, A., Klievink, J., Leitner, J., Pölönen, P., Hohtari, H., Saeed, K., Hannunen, T., & Ellonen, P. (2020). Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood, 135(9), 597–609.

    Article  Google Scholar 

  111. Dong, M. B., Wang, G., Chow, R. D., Ye, L., Zhu, L., Dai, X., Park, J. J., Kim, H. R., Errami, Y., Guzman, C. D., & Zhou, X. (2019). Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell, 178(5), 1189–1204.

    Article  CAS  Google Scholar 

  112. Siolas, D., Vucic, E., Kurz, E., Hajdu, C., & Bar-Sagi, D. (2021). Gain-of-function p53R172H mutation drives accumulation of neutrophils in pancreatic tumors, promoting resistance to immunotherapy. Cell Reports, 36(8), 109578.

    Article  CAS  Google Scholar 

  113. Soares, F., Chen, B., Lee, J. B., Ahmed, M., Ly, D., Tin, E., Kang, H., Zeng, Y., Akhtar, N., Minden, M. D., & He, H. H. (2021). CRISPR screen identifies genes that sensitize AML cells to double-negative T-cell therapy. Blood, 137(16), 2171–2181.

    Article  CAS  Google Scholar 

  114. Dersh, D., Phelan, J. D., Gumina, M. E., Wang, B., Arbuckle, J. H., Holly, J., Kishton, R. J., Markowitz, T. E., Seedhom, M. O., Fridlyand, N., & Wright, G. W. (2021). Genome-wide screens identify lineage-and tumor-specific genes modulating MHC-I-and MHC-II-restricted immunosurveillance of human lymphomas. Immunity, 54(1), 116–131.

    Article  CAS  Google Scholar 

  115. Kim, M. Y., Yu, K. R., Kenderian, S. S., Ruella, M., Chen, S., Shin, T. H., Aljanahi, A. A., Schreeder, D., Klichinsky, M., Shestova, O., & Kozlowski, M. S. (2018). Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell, 173(6), 1439–1453.

    Article  CAS  Google Scholar 

  116. Lu, Y., Xue, J., Deng, T., Zhou, X., Yu, K., Deng, L., Huang, M., Yi, X., Liang, M., Wang, Y., & Shen, H. (2020). Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nature medicine, 26(5), 732–740.

    Article  CAS  Google Scholar 

  117. Stadtmauer, E. A., Fraietta, J. A., Davis, M. M., Cohen, A. D., Weber, K. L., Lancaster, E., Mangan, P. A., Kulikovskaya, I., Gupta, M., Chen, F., & Tian, L. (2020). CRISPR-engineered T cells in patients with refractory cancer. Science, 367(6481), eaba7365.

    Article  CAS  Google Scholar 

  118. Tian, X., Gu, T., Patel, S., Bode, A. M., Lee, M. H., & Dong, Z. (2019). CRISPR/Cas9–An evolving biological tool kit for cancer biology and oncology. NPJ precision oncology, 3(1), 1–8.

    Article  Google Scholar 

  119. Hu, Z., Yu, L., Zhu, D., Ding, W., Wang, X., Zhang, C., Wang, L., Jiang, X., Shen, H., He, D., & Li, K. (2014). Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed research international. https://doi.org/10.1155/2014/612823

    Article  Google Scholar 

  120. Uddin, F., Rudin, C., & Sen, T. (2020). CRISPR gene therapy: applications, limitations, and implications for the future. Frontiers In Oncology, 10, 1387.

    Article  Google Scholar 

  121. Sýkora, P. (2018). Chapter 11 germline gene therapy in the era of precise genome editing: how far should we go? In M. Soniewicka (Ed.), The ethics of reproductive genetics (pp. 157–171). Springer.

    Chapter  Google Scholar 

  122. Liang, P., Xu, Y., Zhang, X., Ding, C., Huang, R., Zhang, Z., Lv, J., Xie, X., Chen, Y., Li, Y., & Sun, Y. (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & cell, 6(5), 363–372.

    Article  CAS  Google Scholar 

  123. Robert, F., Barbeau, M., Éthier, S., Dostie, J., & Pelletier, J. (2015). Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Medicine, 7(1), 1–11.

    Article  CAS  Google Scholar 

  124. Brokowski, C., & Adli, M. (2019). CRISPR ethics: moral considerations for applications of a powerful tool. Journal Of Molecular Biology, 431(1), 88–101.

    Article  CAS  Google Scholar 

  125. Tang, L., Zeng, Y., Du, H., Gong, M., Peng, J., Zhang, B., Lei, M., Zhao, F., Wang, W., Li, X., & Liu, J. (2017). CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Molecular genetics and genomics, 292(3), 525–533.

    Article  CAS  Google Scholar 

  126. Kaiser, J., & Normile, D. (2015). Embryo engineering study splits scientific community. Science, 348(6234), 486–487.

    Article  CAS  Google Scholar 

  127. Janik, E., Niemcewicz, M., Ceremuga, M., Krzowski, L., Saluk-Bijak, J., & Bijak, M. (2020). Various aspects of a gene editing system—CRISPR–Cas9. International Journal Of Molecular Sciences, 21(24), 9604.

    Article  CAS  Google Scholar 

  128. Khalaf, K., Janowicz, K., Dyszkiewicz-Konwińska, M., Hutchings, G., Dompe, C., Moncrieff, L., Jankowski, M., Machnik, M., Oleksiewicz, U., Kocherova, I., & Petitte, J. (2020). CRISPR/Cas9 in cancer immunotherapy: Animal models and human clinical trials. Genes, 11(8), 921.

    Article  CAS  Google Scholar 

  129. He, S. (2020). The first human trial of CRISPR-based cell therapy clears safety concerns as new treatment for late-stage lung cancer. Signal Transduction and Targeted Therapy, 5(1), 1–2.

    Article  Google Scholar 

  130. Lino, C., Harper, J., Carney, J., & Timlin, J. (2018). Delivering CRISPR: A review of the challenges and approaches. Drug Delivery, 25(1), 1234–1257.

    Article  CAS  Google Scholar 

  131. Soussi, T., & Wiman, K. (2015). TP53: An oncogene in disguise. Cell Death & Differentiation, 22(8), 1239–1249.

    Article  CAS  Google Scholar 

  132. Moon, S., Kim, D., Ko, J., & Kim, Y. (2019). Recent advances in the CRISPR genome editing tool set. Experimental & Molecular Medicine, 51(11), 1–11.

    Article  CAS  Google Scholar 

  133. Han, H., Pang, J., & Soh, B. (2020). Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. Journal Of Molecular Medicine, 98(5), 615–632.

    Article  CAS  Google Scholar 

  134. Araki, M., & Ishii, T. (2016). Providing appropriate risk information on genome editing for patients. Trends In Biotechnology, 34(2), 86–90.

    Article  CAS  Google Scholar 

  135. Lau, C., & Suh, Y. (2017). In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Research, 6, 2153.

    Article  Google Scholar 

  136. Walton, R., Christie, K., Whittaker, M., & Kleinstiver, B. (2020). Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science, 368(6488), 290–296.

    Article  CAS  Google Scholar 

  137. O’Connell, M., Oakes, B., Sternberg, S., East-Seletsky, A., Kaplan, M., & Doudna, J. (2014). Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 516(7530), 263–266.

    Article  Google Scholar 

  138. Strutt, S., Torrez, R., Kaya, E., Negrete, O., & Doudna, J. (2018). RNA-dependent RNA targeting by CRISPR-Cas9. eLife. https://doi.org/10.7554/eLife.32724

    Article  Google Scholar 

  139. Ihry, R. J., Worringer, K. A., Salick, M. R., Frias, E., Ho, D., Theriault, K., Kommineni, S., Chen, J., Sondey, M., Ye, C., & Randhawa, R. (2018). p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nature medicine, 24(7), 939–946.

    Article  CAS  Google Scholar 

  140. Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., & Taipale, J. (2018). CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nature Medicine, 24(7), 927–930.

    Article  CAS  Google Scholar 

  141. Kosicki, M., Tomberg, K., & Bradley, A. (2018). Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology, 36(8), 765–771.

    Article  CAS  Google Scholar 

  142. Moses, C., Nugent, F., Waryah, C., Garcia-Bloj, B., Harvey, A., & Blancafort, P. (2019). Activating PTEN Tumor Suppressor Expression with the CRISPR/dCas9 System. Molecular Therapy - Nucleic Acids, 14, 287–300.

    Article  CAS  Google Scholar 

  143. Xu, X., & Qi, L. (2019). A CRISPR–dCas toolbox for genetic engineering and synthetic biology. Journal Of Molecular Biology, 431(1), 34–47.

    Article  CAS  Google Scholar 

  144. Charlesworth, C. T., Deshpande, P. S., Dever, D. P., Camarena, J., Lemgart, V. T., Cromer, M. K., Vakulskas, C. A., Collingwood, M. A., Zhang, L., Bode, N. M., & Behlke, M. A. (2019). Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nature medicine, 25(2), 249–254.

    Article  CAS  Google Scholar 

  145. Moreno, A. M., Palmer, N., Alemán, F., Chen, G., Pla, A., Jiang, N., Leong Chew, W., Law, M., & Mali, P. (2019). Immune-orthogonal orthologues of AAV capsids and of Cas9 circumvent the immune response to the administration of gene therapy. Nature biomedical engineering, 3(10), 806–816.

    Article  CAS  Google Scholar 

  146. Selvakumar, S. C., Preethi, K. A., Ross, K., Tusubira, D., Khan, M. W. A., Mani, P., Rao, T. N., & Sekar, D., (2022). CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Molecular Cancer, 21(1), 1–14.

    Article  Google Scholar 

  147. Tang, H., & Shrager, J. B. (2016). CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: A personalized molecular surgical therapy. EMBO Molecular Medicine, 8(2), 83–85.

    Article  CAS  Google Scholar 

  148. Chen, Z. H., Yu, Y. P., Zuo, Z. H., Nelson, J. B., Michalopoulos, G. K., Monga, S., Liu, S., Tseng, G., & Luo, J. H. (2017). Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene. Nature biotechnology, 35(6), 543–550.

    Article  CAS  Google Scholar 

  149. Liu, J. J., Orlova, N., Oakes, B. L., Ma, E., Spinner, H. B., Baney, K. L., Chuck, J., Tan, D., Knott, G. J., Harrington, L. B., & Al-Shayeb, B. (2019). CRISPR-CasX is an RNA-dominated enzyme active for human genome editing. Nature, 566(7743), 218.

    Article  CAS  Google Scholar 

  150. Tsuchida, C. A., Zhang, S., Doost, M. S., Zhao, Y., Wang, J., O’Brien, E., Fang, H., Li, C. P., Li, D., Hai, Z. Y., & Chuck, J. (2022). Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Molecular Cell, 82(6), 1199–1209.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satarupa Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, S., Mukherjee, R. & Banerjee, S. Recent Advances and Therapeutic Strategies Using CRISPR Genome Editing Technique for the Treatment of Cancer. Mol Biotechnol 65, 206–226 (2023). https://doi.org/10.1007/s12033-022-00550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00550-9

Keywords

Navigation