Skip to main content
Log in

Laser Microdissection of Woody and Suberized Plant Tissues for RNA-Seq Analysis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

An accurate profile of gene expression at a cellular level can contribute to a better understanding of biological processes and complexities involved in regulatory mechanism of woody plants. Laser microdissection is one technique that allows isolation of specific, target cells or tissue from a heterogeneous cell population. This technique entails microscopic visualization of the selected tissue and use a laser beam to separate the desired cells from surrounding tissue. Initial identification of these cells is made based on morphology and/or histological staining. Some works have been made in several tissues and plant models. However, there are few studies of laser microdissection application in woody species, particularly, lignified and suberized cells. Moreover, the presence of high level of suberin in cell walls can be a big challenge for the application of this approach. In our study it was developed a technique for tissue isolation, using laser microdissection of four different plant cell types (phellogen, lenticels, cortex and xylem) from woody tissues of cork oak (Quercus suber), followed by RNA extraction and RNA-Seq. We tested several methodologies regarding laser microdissection, cryostat equipments, fixation treatments, duration of single-cells collection and number of isolated cells by laser microdissection and RNA extraction procedures. A simple and efficient protocol for tissue isolation by laser microdissection and RNA purification was obtained, with a final method validation of RNA-Seq analysis. The optimized methodology combining RNA-Seq for expression analysis will contribute to elucidate the molecular pathways associated with different development processes of the xylem and phellem in oaks, including the lenticular channels formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbott, E., Hall, D., Hamberger, B., & Bohlmann, J. (2010). Laser microdissection of conifer stem tissues: Isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca). BMC Plant Biology, 10, 1–16. https://doi.org/10.1186/1471-2229-10-106

    Article  CAS  Google Scholar 

  2. Rogers, E. D., Jackson, T., Moussaieff, A., Aharoni, A., & Benfey, P. N. (2012). Cell type-specific transcriptional profiling: Implications for metabolite profiling. Plant Journal. https://doi.org/10.1111/j.1365-313X.2012.04888.x

    Article  Google Scholar 

  3. Sakai, K., Taconnat, L., Borrega, N., Yansouni, J., Brunaud, V., Paysant-Le Roux, C., & Dubreucq, B. (2018). Combining laser-assisted microdissection (LAM) and RNA-seq allows to perform a comprehensive transcriptomic analysis of epidermal cells of Arabidopsis embryo. Plant Methods, 14(1), 1–12. https://doi.org/10.1186/s13007-018-0275-x

    Article  CAS  Google Scholar 

  4. Birnbaum, K., Jung, J. W., Wang, J. Y., Lambert, G. M., Hirst, J. A., Galbraith, D. W., & Benfey, P. N. (2005). Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nature Methods, 2(8), 615–619. https://doi.org/10.1038/nmeth0805-615

    Article  CAS  PubMed  Google Scholar 

  5. Deal, R. B., & Henikoff, S. (2011). The INTACT method for cell typeg-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nature Protocols, 6(1), 56–68. https://doi.org/10.1038/nprot.2010.175

    Article  CAS  PubMed  Google Scholar 

  6. Zanetti, M. E., Chang, I. F., Gong, F., Galbraith, D. W., & Bailey-Serres, J. (2005). Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiology, 138(2), 624–635. https://doi.org/10.1104/pp.105.059477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Teixeira, R. T. (2010). Laser Microdissection applied to plants. In Microscopy: Science, Technology, Applications and education (pp. 986–992).

  8. Gautam, V., & Sarkar, A. K. (2015). Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants. Molecular Biotechnology, 57(4), 299–308. https://doi.org/10.1007/s12033-014-9824-3

    Article  CAS  PubMed  Google Scholar 

  9. Teixeira, R. T., & Pereira, H. (2010). Suberized cell walls of cork from cork oak differ from other species. Microscopy and Microanalysis, 16(5), 569–575. https://doi.org/10.1017/S1431927610093839

    Article  CAS  PubMed  Google Scholar 

  10. Nelson, T., Tausta, S. L., Gandotra, N., & Liu, T. (2006). Laser microdissection of plant tissue: What you see is what you get. Annual Review of Plant Biology. https://doi.org/10.1146/annurev.arplant.56.032604.144138

    Article  PubMed  Google Scholar 

  11. Blokhina, O., Valerio, C., Sokolowska, K., Zhao, L., Kärkönen, A., Niittylä, T., & Fagerstedt, K. (2017). Laser capture microdissection protocol for xylem tissues of woody plants. Frontiers in Plant Science, 7, 1–14. https://doi.org/10.3389/fpls.2016.01965

    Article  Google Scholar 

  12. Asano, T., Masumura, T., Kusano, H., Kikuchi, S., Kurita, A., Shimada, H., & Kadowaki, K. I. (2002). Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: Toward comprehensive analysis of the genes expressed in the rice phloem. Plant Journal, 32(3), 401–408. https://doi.org/10.1046/j.1365-313X.2002.01423.x

    Article  CAS  Google Scholar 

  13. Anjam, M. S., Ludwig, Y., Hochholdinger, F., Miyaura, C., Inada, M., Siddique, S., & Grundler, F. M. W. (2016). An improved procedure for isolation of high-quality RNA from nematode-infected Arabidopsis roots through laser capture microdissection. Plant Methods, 12(1), 1–9. https://doi.org/10.1186/s13007-016-0123-9

    Article  CAS  Google Scholar 

  14. Takahashi, H., Kamakura, H., Sato, Y., Shiono, K., Abiko, T., Tsutsumi, N., & Nakazono, M. (2010). A method for obtaining high quality RNA from paraffin sections of plant tissues by laser microdissection. Journal of Plant Research, 123(6), 807–813. https://doi.org/10.1007/s10265-010-0319-4

    Article  CAS  PubMed  Google Scholar 

  15. Shiono, K., Yamauchi, T., Yamazaki, S., Mohanty, B., Imran Malik, A., Nagamura, Y., & Nakazono, M. (2014). Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). Journal of Experimental Botany, 65(17), 4795–4806. https://doi.org/10.1093/jxb/eru235

    Article  CAS  PubMed  Google Scholar 

  16. Ohtsu, K., Smith, M. B., Emrich, S. J., Borsuk, L. A., Zhou, R., Chen, T., & Schnable, P. S. (2007). Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J., 52(3), 391–404. https://doi.org/10.1111/j.1365-313X.2007.03244.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martin, L. B. B., Nicolas, P., Matas, A. J., Shinozaki, Y., Catalá, C., & Rose, J. K. C. (2016). Laser microdissection of tomato fruit cell and tissue types for transcriptome profiling. Nature Protocols, 11(12), 2376–2388. https://doi.org/10.1038/nprot.2016.146

    Article  CAS  PubMed  Google Scholar 

  18. Larisch, C., Dittrich, M., Wildhagen, H., Lautner, S., Fromm, J., Polle, A., & Ache, P. (2012). Poplar wood rays are involved in seasonal remodeling of tree physiology. Plant Physiology, 160(3), 1515–1529. https://doi.org/10.1104/pp.112.202291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teixeira, R. T., Fortes, A. M., Bai, H., Pinheiro, C., & Pereira, H. (2018). Transcriptional profiling of cork oak phellogenic cells isolated by laser microdissection. Planta, 247(2), 317–338. https://doi.org/10.1007/s00425-017-2786-5

    Article  CAS  PubMed  Google Scholar 

  20. Graça, J., & Pereira, H. (2004). The periderm development in Quercus suber. IAWA Journal, 25(3), 325–335. https://doi.org/10.1163/22941932-90000369

    Article  Google Scholar 

  21. Rosner, S., & Kartusch, B. (2003). Structural changes in primary lenticels of Norway spruce over the seasons. IAWA Journal, 24(2), 105–116. https://doi.org/10.1163/22941932-90000324

    Article  Google Scholar 

  22. Reid, K. E., Olsson, N., Schlosser, J., Peng, F., & Lund, S. T. (2006). An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biology, 6, 1–11. https://doi.org/10.1186/1471-2229-6-27

    Article  CAS  Google Scholar 

  23. Marum, L., Miguel, A., Ricardo, C. P., & Miguel, C. (2012). Reference gene selection for quantitative real-time PCR normalization in Quercus suber. PLoS ONE, 7(4), e0035113. https://doi.org/10.1371/journal.pone.0035113

    Article  CAS  Google Scholar 

  24. Picelli, S., Faridani, O. R., Björklund, Å. K., Winberg, G., Sagasser, S., & Sandberg, R. (2014). Full-length RNA-seq from single cells using Smart-seq2. Nature Protocols, 9(1), 171–181. https://doi.org/10.1038/nprot.2014.006

    Article  CAS  PubMed  Google Scholar 

  25. Baym, M., Kryazhimskiy, S., Lieberman, T. D., Chung, H., Desai, M. M., & Kishony, R. K. (2015). Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE, 10(5), 1–15. https://doi.org/10.1371/journal.pone.0128036

    Article  CAS  Google Scholar 

  26. Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data.

  27. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramos, A. M., Usié, A., Barbosa, P., Barros, P. M., Capote, T., Chaves, I., & Gonçalves, S. (2018). The draft genome sequence of cork oak. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2018.69

    Article  CAS  Google Scholar 

  29. Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., & Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  30. Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166–169. https://doi.org/10.1093/bioinformatics/btu638

    Article  CAS  PubMed  Google Scholar 

  31. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hill, T., & Lewicki, P. (2007). STATISTICS: Methods and applications. StatSoft.

    Google Scholar 

  33. Lopez, F. B., & Barclay, G. F. (2017). Plant anatomy and physiology. In S. Badal & R. Delgoda (Eds.), Pharmacognosy: Fundamentals, applications and strategy (pp. 45–60). Academic Press. https://doi.org/10.1016/B978-0-12-802104-0.00004-4

    Chapter  Google Scholar 

  34. Schreiber, L. (2010). Transport barriers made of cutin, suberin and associated waxes. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2010.06.004

    Article  PubMed  Google Scholar 

  35. Enstone, D. E., Peterson, C. A., & Ma, F. (2002). Root endodermis and exodermis: Structure, function, and responses to the environment. Journal of Plant Growth Regulation, 21(4), 335–351. https://doi.org/10.1007/s00344-003-0002-2

    Article  CAS  Google Scholar 

  36. Graça, J. (2015). Suberin: The biopolyester at the frontier of plants. Frontiers in Chemistry, 3, 62. https://doi.org/10.3389/fchem.2015.00062

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kerk, N. M., Ceserani, T., Lorraine Tausta, S., Sussex, I. M., & Nelson, T. M. (2003). Laser capture microdissection of cells from plant tissues. Plant Physiology, 132(1), 27–35. https://doi.org/10.1104/pp.102.018127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu, Y., Li, H., Bhatti, S., Zhou, S., Yang, Y., Fish, T., & Thannhauser, T. W. (2016). Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots. Horticulture Research, 3, 26. https://doi.org/10.1038/hortres.2016.26

    Article  CAS  Google Scholar 

  39. Velada, I., Menéndez, E., Teixeira, R. T., Cardoso, H., & Peixe, A. (2021). Laser microdissection of specific stem-base tissue types from olive microcuttings for isolation of high-quality RNA. Biology, 10(3), 1–13. https://doi.org/10.3390/biology10030209

    Article  CAS  Google Scholar 

  40. Santi, S. (2019). Laser microdissection of phytoplasma-infected grapevine leaf phloem tissue for gene expression study. In R. Musetti & L. Pagliari (Eds.), Phytoplasmas, methods in molecular biology (pp. 279–290). Humana Press. https://doi.org/10.1007/978-1-4939-8837-2_20

    Chapter  Google Scholar 

  41. Cai, S., & Lashbrook, C. C. (2006). Laser capture microdissection of plant cells from tape-transferred paraffin sections promotes recovery of structurally intact RNA for global gene profiling. Plant Journal, 48(4), 628–637. https://doi.org/10.1111/j.1365-313X.2006.02886.x

    Article  CAS  Google Scholar 

  42. Morrogh, M., Olvera, N., Bogomolniy, F., Borgen, P. I., & King, T. A. (2007). Tissue preparation for laser capture microdissection and RNA extraction from fresh frozen breast tissue. BioTechniques, 43(1), 41–48. https://doi.org/10.2144/000112497

    Article  CAS  PubMed  Google Scholar 

  43. Loureiro, J., Rodriguez, E., Doležel, J., & Santos, C. (2006). Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Annals of Botany, 98(3), 679–689. https://doi.org/10.1093/aob/mcl141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Almeida, T., Pinto, G., Correia, B., Gonçalves, S., Meijón, M., & Escandón, M. (2020). In-depth analysis of the Quercus suber metabolome under drought stress and recovery reveals potential key metabolic players. Plant Science, 299, 110606. https://doi.org/10.1016/j.plantsci.2020.110606

    Article  CAS  PubMed  Google Scholar 

  45. Marum, L., Rocheta, M., Maroco, J., Oliveira, M. M., & Miguel, C. (2009). Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Reports, 28(4), 673–682. https://doi.org/10.1007/s00299-008-0668-9

    Article  CAS  PubMed  Google Scholar 

  46. Fort, F., Hayoun, L., Valls, J., Canals, J. M., Arola, L., & Zamora, F. (2008). A new and simple method for rapid extraction and isolation of high-quality RNA from grape (Vitis vinifera) berries. Journal of the Science of Food and Agriculture, 88(2), 179–184. https://doi.org/10.1002/jsfa.3066

    Article  CAS  Google Scholar 

  47. Cañas, R. A., Canales, J., Gómez-Maldonado, J., Ávila, C., & Cánovas, F. M. (2014). Transcriptome analysis in maritime pine using laser capture microdissection and 454 pyrosequencing. Tree Physiology, 34(11), 1278–1288. https://doi.org/10.1093/treephys/tpt113

    Article  CAS  PubMed  Google Scholar 

  48. Wagenführ, R. (2007). Holzatlas, wood atlas (6th ed.). Fachbuchverlag im Carl Hanser Verlag.

    Google Scholar 

  49. Höfer, R., Briesen, I., Beck, M., Pinot, F., Schreiber, L., & Franke, R. (2008). The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis. Journal of Experimental Botany, 59(9), 2347–2360. https://doi.org/10.1093/jxb/ern101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present work was supported by Programme Alentejo 2020 under the scope of Lentidev—A molecular approach to cork porosity (ALT20-03-0145-FEDER-000020) and by Programme PORTUGAL 2020 Partnership Agreement, under the scope of Biodata.pt—Infraestrutura Portuguesa de Dados Biológicos (22231/01/SAICT/2016), through the European Regional Development Fund (ERDF). The authors also acknowledge FCT to Contrato—Programa to L. Marum (CEECINST/00131/2018) and A. Usié (CEECINST/00100/2021). This work was also funded through FCT under the projects UIDB/05183/2020 to Mediterranean Institute for Agriculture, Environment and Development (MED), LA/P/0121/2020 to Global Change and Sustainability Institute (CHANGE), and UID/50017/2020+UIDB/50017/2020+LA/P/0094/2020 to Centre for Environmental and Marine Studies (CESAM).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LM; Methodology: RCP, AF, TC, BC and EM; Formal analysis and investigation: RCP and TC; AU; Writing—original draft preparation: RCP and LM; Writing—review and editing: RCP, AF, AU, GP, EM and LM; Project administration: LM; Supervision: GP and LM.

Corresponding author

Correspondence to Liliana Marum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12033_2022_542_MOESM1_ESM.tif

Supplementary file1 Fig. S1 PCR amplification of β-tubulin reference gene in xylem (Xyl) and phellogen (Phel) tissues by reverse transcription-polymerase chain reaction (RT-PCR). Lane M, 1 kb DNA size marker. The PCR products showed a band at position 92 bp related to the amplicon size. (TIF 22133 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, R.C., Ferro, A., Capote, T. et al. Laser Microdissection of Woody and Suberized Plant Tissues for RNA-Seq Analysis. Mol Biotechnol 65, 419–432 (2023). https://doi.org/10.1007/s12033-022-00542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00542-9

Keywords

Navigation