Skip to main content
Log in

Laser Assisted Microdissection, an Efficient Technique to Understand Tissue Specific Gene Expression Patterns and Functional Genomics in Plants

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Laser assisted microdissection (LAM) is an advanced technology used to perform tissue or cell-specific expression profiling of genes and proteins, owing to its ability to isolate the desired tissue or cell type from a heterogeneous population. Due to the specificity and high efficiency acquired during its pioneering use in medical science, the LAM technique has quickly been adopted for use in many biological researches. Today, it has become a potent tool to address a wide range of questions in diverse field of plant biology. Beginning with comparative transcriptome analysis of different tissues such as reproductive parts, meristems, lateral organs, roots etc., LAM has also been extensively used in plant-pathogen interaction studies, proteomics, and metabolomics. In combination with next generation sequencing and proteomics analysis, LAM has opened up promising opportunities in the area of large scale functional studies in plants. Ever since the advent of this technique, significant improvements have been achieved in term of its instrumentation and method, which has made LAM a more efficient tool applicable in wider research areas. Here, we discuss the advancement of LAM technique with special emphasis on its methodology and highlight its scope in modern research areas of plant biology. Although we put emphasis on use of LAM in transcriptome studies, which is mostly used, we also discuss its recent application and scope in proteome and metabolome studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martin, C., Bhatt, K., & Baumann, K. (2001). Shaping in plant cells. Current Opinion in Plant Biology, 4, 540–549.

    Article  CAS  Google Scholar 

  2. Mallick, P., & Kuster, B. (2010). Proteomics: A pragmatic perspective. Nature Biotechnology, 28, 695–709.

    Article  CAS  Google Scholar 

  3. Iyer-Pascuzzi, A. S., & Benfey, P. N. (2010). Fluorescence-activated cell sorting in plant developmental biology. Methods in Molecular Biology, 655, 313–319.

    Article  CAS  Google Scholar 

  4. Schmid, M. W., Schmidt, A., Klostermeier, U. C., Barann, M., Rosenstiel, P., & Grossniklaus, U. (2012). A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing. PLoS One, 7, e29685.

    Article  CAS  Google Scholar 

  5. Day, R. C., Grossniklaus, U., & Macknight, R. C. (2005). Be more specific! Laser-assisted microdissection of plant cells. Trends in Plant Science, 10, 397–406.

    Article  CAS  Google Scholar 

  6. Liu, A. (2010). Laser capture microdissection in the tissue biorepository. Journal of Biomolecular Techniques: JBT, 21, 120–125.

    CAS  Google Scholar 

  7. Domazet, B., Maclennan, G. T., Lopez-Beltran, A., Montironi, R., & Cheng, L. (2008). Laser capture microdissection in the genomic and proteomic era: Targeting the genetic basis of cancer. International Journal of Clinical and Experimental Pathology, 1, 475–488.

    CAS  Google Scholar 

  8. Ordway, G. A., Szebeni, A., Duffourc, M. M., Dessus-Babus, S., & Szebeni, K. (2009). Gene expression analyses of neurons, astrocytes, and oligodendrocytes isolated by laser capture microdissection from human brain: detrimental effects of laboratory humidity. Journal of Neuroscience Research, 87, 2430–2438.

    Article  CAS  Google Scholar 

  9. Spencer, M. W., Casson, S. A., & Lindsey, K. (2007). Transcriptional profiling of the Arabidopsis embryo. Plant Physiology, 143, 924–940.

    Article  CAS  Google Scholar 

  10. Brooks, L, 3rd, Strable, J., Zhang, X., Ohtsu, K., Zhou, R., Sarkar, A., et al. (2009). Microdissection of shoot meristem functional domains. PLoS Genetics, 5, e1000476.

    Article  Google Scholar 

  11. Zhang, X., Douglas, R. N., Strable, J., Lee, M., Buckner, B., Janick-Buckner, D., et al. (2012). Punctate vascular expression1 is a novel maize gene required for leaf pattern formation that functions downstream of the trans-acting small interfering RNA pathway. Plant Physiology, 159, 1453–1462.

    Article  CAS  Google Scholar 

  12. Asano, T., Masumura, T., Kusano, H., Kikuchi, S., Kurita, A., Shimada, H., & Kadowaki, K. (2002). Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. The Plant Journal, 32, 401–408.

    Article  CAS  Google Scholar 

  13. Nelson, T., Tausta, S. L., Gandotra, N., & Liu, T. (2006). Laser microdissection of plant tissue: What you see is what you get. Annual Review of Plant Biology, 57, 181–201.

    Article  CAS  Google Scholar 

  14. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R., et al. (1996). Laser capture microdissection. Science, 274, 998–1001.

    Article  CAS  Google Scholar 

  15. Curran, S., McKay, J. A., McLeod, H. L., & Murray, G. I. (2000). Laser capture microscopy. Molecular Pathology, 53, 64–68.

    Article  CAS  Google Scholar 

  16. Ludwig, Y., & Hochholdinger, F. (2014). Laser microdissection of plant cells. Methods in Molecular Biology, 1080, 249–258.

    Article  Google Scholar 

  17. Su, J. M., Perlaky, L., Li, X. N., Leung, H. C., Antalffy, B., Armstrong, D., & Lau, C. C. (2004). Comparison of ethanol versus formalin fixation on preservation of histology and RNA in laser capture microdissected brain tissues. Brain Pathology, 14, 175–182.

    Article  Google Scholar 

  18. Goldsworthy, S. M., Stockton, P. S., Trempus, C. S., Foley, J. F., & Maronpot, R. R. (1999). Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Molecular Carcinogenesis, 25, 86–91.

    Article  CAS  Google Scholar 

  19. Nakazono, M., Qiu, F., Borsuk, L. A., & Schnable, P. S. (2003). Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: Identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell, 15, 583–596.

    Article  CAS  Google Scholar 

  20. Balestrini, R., Gomez-Ariza, J., Lanfranco, L., & Bonfante, P. (2007). Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Molecular Plant-Microbe Interactions, 20, 1055–1062.

    Article  CAS  Google Scholar 

  21. Scanlon, M. J., Ohtsu, K., Timmermans, M. C., & Schnable, P. S. (2009). Laser microdissection-mediated isolation and in vitro transcriptional amplification of plant RNA. Current Protocols in Molecular Biology, Chapter 25, Unit 25A 23.

  22. Takacs, E. M., Li, J., Du, C., Ponnala, L., Janick-Buckner, D., Yu, J., et al. (2012). Ontogeny of the maize shoot apical meristem. Plant Cell, 24, 3219–3234.

    Article  CAS  Google Scholar 

  23. Casson, S., Spencer, M., Walker, K., & Lindsey, K. (2005). Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. The Plant Journal, 42, 111–123.

    Article  CAS  Google Scholar 

  24. Kerk, N. M., Ceserani, T., Tausta, S. L., Sussex, I. M., & Nelson, T. M. (2003). Laser capture microdissection of cells from plant tissues. Plant Physiology, 132, 27–35.

    Article  CAS  Google Scholar 

  25. Takahashi, H., Kamakura, H., Sato, Y., Shiono, K., Abiko, T., Tsutsumi, N., et al. (2010). A method for obtaining high quality RNA from paraffin sections of plant tissues by laser microdissection. Journal of Plant Research, 123, 807–813.

    Article  CAS  Google Scholar 

  26. Shibutani, M., Uneyama, C., Miyazaki, K., Toyoda, K., & Hirose, M. (2000). Methacarn fixation: A novel tool for analysis of gene expressions in paraffin-embedded tissue specimens. Laboratory Investigation, 80, 199–208.

    Article  CAS  Google Scholar 

  27. Schad, M., Lipton, M. S., Giavalisco, P., Smith, R. D., & Kehr, J. (2005). Evaluation of two-dimensional electrophoresis and liquid chromatography–tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples. Electrophoresis, 26, 2729–2738.

    Article  CAS  Google Scholar 

  28. Dembinsky, D., Woll, K., Saleem, M., Liu, Y., Fu, Y., Borsuk, L. A., et al. (2007). Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiology, 145, 575–588.

    Article  CAS  Google Scholar 

  29. Barcala, M., Fenoll, C., & Escobar, C. (2012). Laser microdissection of cells and isolation of high-quality RNA after cryosectioning. Methods in Molecular Biology, 883, 87–95.

    Article  CAS  Google Scholar 

  30. Ginsberg, S. D. (2005). RNA amplification strategies for small sample populations. Methods, 37, 229–237.

    Article  CAS  Google Scholar 

  31. Zhang, D., & Koay, E. S. (2008). Analysis of laser capture microdissected cells by 2-dimensional gel electrophoresis. Methods in Molecular Biology, 428, 77–91.

    Article  CAS  Google Scholar 

  32. Klink, V. P., Alkharouf, N., MacDonald, M., & Matthews, B. (2005). Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Molecular Biology, 59, 965–979.

    Article  CAS  Google Scholar 

  33. Gaude, N., Schulze, W. X., Franken, P., & Krajinski, F. (2012). Cell type-specific protein and transcription profiles implicate periarbuscular membrane synthesis as an important carbon sink in the mycorrhizal symbiosis. Plant Signaling & Behavior, 7, 461–464.

    Article  CAS  Google Scholar 

  34. Emrich, S. J., Barbazuk, W. B., Li, L., & Schnable, P. S. (2007). Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Research, 17, 69–73.

    Article  CAS  Google Scholar 

  35. Canas, R. A., Canales, J., Gomez-Maldonado, J., Avila, C., & Canovas, F. M. (2014). Transcriptome analysis in maritime pine using laser capture microdissection and 454 pyrosequencing. Tree Physiology.

  36. Chandran, D., Inada, N., Hather, G., Kleindt, C. K., & Wildermuth, M. C. (2010). Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proceedings of the National Academy of Sciences of the United States of America, 107, 460–465.

    Article  CAS  Google Scholar 

  37. Ithal, N., Recknor, J., Nettleton, D., Maier, T., Baum, T. J., & Mitchum, M. G. (2007). Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Molecular Plant-Microbe Interactions, 20, 510–525.

    Article  CAS  Google Scholar 

  38. Klink, V. P., Overall, C. C., Alkharouf, N. W., MacDonald, M. H., & Matthews, B. F. (2007). Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta, 226, 1389–1409.

    Article  CAS  Google Scholar 

  39. Chandran, D., Inada, N., Hather, G., Kleindt, C. K., & Wildermuth, M. C. (2009). Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proceedings of the National Academy of Sciences of the United States of America, 107, 460–465.

    Article  Google Scholar 

  40. Ramsay, K., Wang, Z., & Jones, M. G. (2004). Using laser capture microdissection to study gene expression in early stages of giant cells induced by root-knot nematodes. Molecular Plant Pathology, 5, 587–592.

    Article  CAS  Google Scholar 

  41. Roux, B., Rodde, N., Jardinaud, M. F., Timmers, T., Sauviac, L., Cottret, L., et al. (2014). An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. The Plant Journal, 77, 817–837.

    Article  CAS  Google Scholar 

  42. Berruti, A., Borriello, R., Lumini, E., Scariot, V., Bianciotto, V., & Balestrini, R. (2013). Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells. Frontiers in Plant Science, 4, 135.

    Article  Google Scholar 

  43. Chen, G., Gharib, T. G., Huang, C. C., Taylor, J. M., Misek, D. E., Kardia, S. L., et al. (2002). Discordant protein and mRNA expression in lung adenocarcinomas. Molecular and Cellular Proteomics, 1, 304–313.

    Article  CAS  Google Scholar 

  44. Guo, J., Colgan, T. J., DeSouza, L. V., Rodrigues, M. J., Romaschin, A. D., & Siu, K. W. (2005). Direct analysis of laser capture microdissected endometrial carcinoma and epithelium by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 19, 2762–2766.

    Article  CAS  Google Scholar 

  45. Liu, Y., von Behrens, I., Muthreich, N., Schutz, W., Nordheim, A., & Hochholdinger, F. (2010). Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation. European Journal of Cell Biology, 89, 236–241.

    Article  CAS  Google Scholar 

  46. Woll, K., Borsuk, L. A., Stransky, H., Nettleton, D., Schnable, P. S., & Hochholdinger, F. (2005). Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. Plant Physiology, 139, 1255–1267.

    Article  CAS  Google Scholar 

  47. Fang, J., & Schneider, B. (2013). Laser microdissection: A sample preparation technique for plant micrometabolic profiling. Phytochemical Analysis: PCA, 25, 307–313.

    Article  Google Scholar 

  48. Fang, J., Reichelt, M., Hidalgo, W., Agnolet, S., & Schneider, B. (2012). Tissue-specific distribution of secondary metabolites in rapeseed (Brassica napus L.). PLoS One, 7, e48006.

    Article  CAS  Google Scholar 

  49. Schad, M., Mungur, R., Fiehn, O., & Kehr, J. (2005). Metabolic profiling of laser microdissected vascular bundles of Arabidopsis thaliana. Plant Methods, 1, 2.

    Article  Google Scholar 

  50. Holscher, D., & Schneider, B. (2007). Laser microdissection and cryogenic nuclear magnetic resonance spectroscopy: an alliance for cell type-specific metabolite profiling. Planta, 225, 763–770.

    Article  CAS  Google Scholar 

  51. Li, S. H., Schneider, B., & Gershenzon, J. (2007). Microchemical analysis of laser-microdissected stone cells of Norway spruce by cryogenic nuclear magnetic resonance spectroscopy. Planta, 225, 771–779.

    Article  CAS  Google Scholar 

  52. Abbott, E., Hall, D., Hamberger, B., & Bohlmann, J. (2010). Laser microdissection of conifer stem tissues: isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca). BMC Plant Biology, 10, 106.

    Article  Google Scholar 

  53. Fiehn, O. (2002). Metabolomics–the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  CAS  Google Scholar 

  54. Portillo, M., Lindsey, K., Casson, S., Garcia-Casado, G., Solano, R., Fenoll, C., & Escobar, C. (2009). Isolation of RNA from laser-capture-microdissected giant cells at early differentiation stages suitable for differential transcriptome analysis. Molecular Plant Pathology, 10, 523–535.

    Article  CAS  Google Scholar 

  55. Ohtsu, K., Smith, M. B., Emrich, S. J., Borsuk, L. A., Zhou, R., Chen, T., et al. (2007). Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). The Plant Journal, 52, 391–404.

    Article  CAS  Google Scholar 

  56. Tauris, B., Borg, S., Gregersen, P. L., & Holm, P. B. (2009). A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. Journal of Experimental Botany, 60, 1333–1347.

    Article  CAS  Google Scholar 

  57. Limpens, E., Moling, S., Hooiveld, G., Pereira, P. A., Bisseling, T., Becker, J. D., & Kuster, H. (2013). cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One, 8, e64377.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank DBT (Department of Biotechnology, India) for Ramalingaswami Fellowship (#BT/HRD/35/02/06/2008) and NIPGR (National Institute of Plant Genome Research) for facility and internal grants. VG thanks CSIR (Council of Scientific and Industrial Research, India) for fellowship. We thank A.K.S. lab members and S. Barik (IIT Gandhinagar) for critical reading of the manuscript. Since it is beyond the scope, we sincerely apologize for not being able to refer many suppliers/companies/products and many research articles related to the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda K. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, V., Sarkar, A.K. Laser Assisted Microdissection, an Efficient Technique to Understand Tissue Specific Gene Expression Patterns and Functional Genomics in Plants. Mol Biotechnol 57, 299–308 (2015). https://doi.org/10.1007/s12033-014-9824-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9824-3

Keywords

Navigation