Skip to main content

Advertisement

Log in

A Study on microRNAs Targeting the Genes Overexpressed in Lung Cancer and their Codon Usage Patterns

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

As reported by WHO in 2018, there were 2.09 million victims of lung cancer and 1.76 million fatalities worldwide. Tobacco remains the biggest hazard in causing this lethal disease. To execute the computational analysis, the overexpressed lung cancer genes were retrieved from literature and subsequently their complete coding sequences (CDS) were downloaded. The mature microRNA sequences of human were extracted from miRBASE. The 7mer-m8 perfect seed match between miRNAs and mRNAs was found. Following filtration, 7 genes were selected that possessed binding sites for maximum miRNAs viz., MUC5B (miR-4479, miR-1227-5p, miR-3940-5p, miR-604, miR-4455, miR-4267, miR-6750-3p, miR-4530, miR-5587-5p, miR-4508, miR-4534, miR-4443, miR-4253, miR-1321, miR-4655-5p, miR-4297, miR-4296, miR-1268a, miR-3178, miR-4750-3p, miR-1306-3p, miR-1268b, miR-3656, miR-1233-3p, miR-6804-5p), MUC16 (miR-4456, miR-1205, miR-665, miR-6808-3p, miR-1279, miR-4257, miR-1227-5p, miR-888-3p, miR-4455, miR-4267, miR-4294, miR-1275, miR-4288, miR-1178-5p, miR-4314, miR-6829-3p, miR-548av-5p, miR-1294, miR-5587-5p, miR-3622b-5p, miR-1273f, miR-4770, miR-4327, miR-4318, miR-4531, miR-4534, miR-4443, miR-7106-5p, miR-3125, miR-3650, miR-4325, miR-4266, miR-7976, miR-1290, miR-4500, miR-7160-5p, miR-4291, miR-1306-3p, miR-6130, miR-4430, miR-4725-5p, miR-4441, miR-6077, miR-1304-5p, miR-7515, miR-3182, miR-6134), COL1A1 (miR-3665, miR-1227-5p, miR-6132, miR-2861, miR-4530, miR-3155b, miR-3155a, miR-1292-3p, miR-4497), COL5A1 (miR-7162-5p, miR-3665, miR-6809-3p, miR-4313, miR-4531, miR-4532, miR-3155b, miR-4323, miR-1207-3p, miR-4260, miR-6071, miR-4710, miR-7162-5p), CELSR2 (miR-7150, miR-4308, miR-6132, miR-4770, miR-4534, miR-4492, miR-3960, miR-3178, miR-4291, miR-563), COL7A1 (miR-665, miR-6730-3p, miR-1227-5p, miR-4265, miR-6829-3p, miR-4297, miR-4532, miR-3181, miR-4310, miR-4441, miR-4497, miR-1237-3p), and FAT2 (miR-4267, miR-1275, miR-4770, miR-1825, miR-6895-5p, miR-4535, miR-4493, miR-940, miR-6861-3p, miR-4310, miR-4710, miR-4447, miR-4472). The miRNA-target site and their flank regions were compared with respect to site accessibility, translational rate, and relationship between RSCU and tRNAs. Higher accessibilities to miRNA-binding regions and lower translational rates indicated that miRNAs’ binding to their respective targets might be efficient. The presence of rare codons might further augment miRNA targeting. The codon usage bias study of the genes related to lung cancer revealed non-uniform usage of nucleotides and comparatively higher GC content. Lower biasness prevailed in the genes and selective constraint mostly governed them. Lastly, the functionalities of target genes were also revealed. The silencing characteristic of miRNAs might be exploited to design miRNA-mediated therapy that might potentially repress the overexpressed genes in carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data are available in the manuscript and in the supplementary file.

Code Availability

Not applicable.

References

  1. Lemjabbar-Alaoui, H., Hassan, O. U., Yang, Y.-W., & Buchanan, P. (2015). Lung cancer: Biology and treatment options. Biochimica et Biophysica Acta (BBA), 1856(2), 189–210.

    CAS  Google Scholar 

  2. Cruz, C. S. D., Tanoue, L. T., & Matthay, R. A. (2011). Lung cancer: Epidemiology, etiology, and prevention. Clinics in Chest Medicine, 32(4), 605–644.

    Article  Google Scholar 

  3. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.

    Article  CAS  Google Scholar 

  4. Kim, D., Chang, H. R., & Baek, D. (2017). Rules for functional microRNA targeting. BMB reports, 50(11), 554.

    Article  CAS  Google Scholar 

  5. Shen, Z., Zhang, Y.-H., Han, K., Nandi, A. K., Honig, B., & Huang, D.-S. (2017). miRNA-disease association prediction with collaborative matrix factorization. Complexity, 2017, 2498957. https://doi.org/10.1155/2017/2498957

    Article  Google Scholar 

  6. Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature reviews Drug discovery, 16(3), 203.

    Article  CAS  Google Scholar 

  7. Hanna, J., Hossain, G. S., & Kocerha, J. (2019). The Potential for microRNA Therapeutics and Clinical Research. Frontiers in Genetics. https://doi.org/10.3389/fgene.2019.00478

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mognato, M., & Celotti, L. (2015). MicroRNAs used in combination with anti-cancer treatments can enhance therapy efficacy. Mini reviews in medicinal chemistry, 15(13), 1052–1062.

    Article  CAS  Google Scholar 

  9. Si, W., Shen, J., Zheng, H., & Fan, W. (2019). The role and mechanisms of action of microRNAs in cancer drug resistance. Clinical epigenetics, 11(1), 25.

    Article  Google Scholar 

  10. Reczko, M., Maragkakis, M., Alexiou, P., Grosse, I., & Hatzigeorgiou, A. G. (2012). Functional microRNA targets in protein coding sequences. Bioinformatics, 28(6), 771–776.

    Article  CAS  Google Scholar 

  11. Zhang, K., Zhang, X., Cai, Z., Zhou, J., Cao, R., Zhao, Y., & Zhao, Q. (2018). A novel class of microRNA-recognition elements that function only within open reading frames. Nature Structural & Molecular Biology, 25(11), 1019–1027.

    Article  CAS  Google Scholar 

  12. Gu, W., Wang, X., Zhai, C., Zhou, T., & Xie, X. (2013). Biological basis of miRNA action when their targets are located in human protein coding region. PLoS ONE, 8(5), e63403.

    Article  CAS  Google Scholar 

  13. Peterson, S., Thompson, J., Ufkin, M., Sathyanarayana, P., Liaw, L., & Congdon, C. B. (2014). Common features of microRNA target prediction tools. Frontiers in Genetics. https://doi.org/10.3389/fgene.2014.00023

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu, W., & Wang, X. (2019). Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biology, 20(1), 18. https://doi.org/10.1186/s13059-019-1629-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gu, W., Zhai, C., Wang, X., Xie, X., Parinandi, G., & Zhou, T. (2012). Translation efficiency in upstream region of microRNA targets in Arabidopsis thaliana. Evolutionary Bioinformatics, 8, 10362.

    Article  Google Scholar 

  16. Gu, W., Wang, X., Zhai, C., Xie, X., & Zhou, T. (2012). Selection on synonymous sites for increased accessibility around miRNA binding sites in plants. Molecular Biology and Evolution, 29(10), 3037–3044.

    Article  CAS  Google Scholar 

  17. Athey, J., Alexaki, A., Osipova, E., Rostovtsev, A., Santana-Quintero, L. V., Katneni, U., & Kimchi-Sarfaty, C. (2017). A new and updated resource for codon usage tables. BMC Bioinformatics, 18(1), 391. https://doi.org/10.1186/s12859-017-1793-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guan, D.-L., Ma, L.-B., Khan, M. S., Zhang, X.-X., Xu, S.-Q., & Xie, J.-Y. (2018). Analysis of codon usage patterns in Hirudinaria manillensis reveals a preference for GC-ending codons caused by dominant selection constraints. BMC Genomics, 19(1), 542. https://doi.org/10.1186/s12864-018-4937-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gun, L., Yumiao, R., Haixian, P., & Liang, Z. (2018). Comprehensive Analysis and Comparison on the Codon Usage Pattern of Whole<i> Mycobacterium tuberculosis</i> Coding Genome from Different Area. BioMed Research International, 2018, 3574976. https://doi.org/10.1155/2018/3574976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song, H., Liu, J., Song, Q., Zhang, Q., Tian, P., & Nan, Z. (2017). Comprehensive analysis of codon usage bias in seven epichloë species and their peramine-coding genes. Frontiers in microbiology. https://doi.org/10.3389/fmicb.2017.01419

    Article  PubMed  PubMed Central  Google Scholar 

  21. LaBella, A. L., Opulente, D. A., Steenwyk, J. L., Hittinger, C. T., & Rokas, A. (2019). Variation and selection on codon usage bias across an entire subphylum. PLoS Genetics, 15(7), e1008304. https://doi.org/10.1371/journal.pgen.1008304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Plotkin, J. B., Robins, H., & Levine, A. J. (2004). Tissue-specific codon usage and the expression of human genes. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12588–12591. https://doi.org/10.1073/pnas.0404957101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Axelsen, J. B., Lotem, J., Sachs, L., & Domany, E. (2007). Genes overexpressed in different human solid cancers exhibit different tissue-specific expression profiles. Proceedings of the National Academy of Sciences, 104(32), 13122–13127. https://doi.org/10.1073/pnas.0705824104

    Article  CAS  Google Scholar 

  24. Lewis, B. P., Shih, I.-H., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115(7), 787–798.

    Article  CAS  Google Scholar 

  25. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., & Segal, E. (2007). The role of site accessibility in microRNA target recognition. Nature Genetics, 39(10), 1278.

    Article  CAS  Google Scholar 

  26. Hausser, J., Landthaler, M., Jaskiewicz, L., Gaidatzis, D., & Zavolan, M. (2009). Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C–miRNA complexes and the degradation of miRNA targets. Genome Research, 19(11), 2009–2020.

    Article  CAS  Google Scholar 

  27. SantaLucia, J. (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences, 95(4), 1460–1465.

    Article  CAS  Google Scholar 

  28. Tuller, T., Waldman, Y. Y., Kupiec, M., & Ruppin, E. (2010). Translation efficiency is determined by both codon bias and folding energy. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3645–3650. https://doi.org/10.1073/pnas.0909910107

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dilucca, M., Cimini, G., Semmoloni, A., Deiana, A., & Giansanti, A. (2015). Codon bias patterns of E. coli’s interacting proteins. PLoS ONE, 10(11), e0142127.

    Article  Google Scholar 

  30. Sun, S., Xiao, J., Zhang, H., & Zhang, Z. (2016). Pangenome evidence for higher codon usage bias and stronger translational selection in core genes of E. coli. Frontiers in Microbiology, 7, 1180. https://doi.org/10.3389/fmicb.2016.01180

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sharp, P. M., & Li, W.-H. (1986). Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’codons. Nucleic Acids Research, 14(19), 7737–7749.

    Article  CAS  Google Scholar 

  32. Wan, X., Xu, D., & Zhou, J. (2003). A new informatics method for measuring synonymous codon usage bias. Intelligent engineering systems through artificial neural networks 13.

  33. Yao, H., Chen, M., & Tang, Z. (2019). Analysis of synonymous codon usage bias in flaviviridae virus. BioMed Research International, 2019, 5857285. https://doi.org/10.1155/2019/5857285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Conesa, A., & Gotz, S. (2008). Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics, 2008, 619832. https://doi.org/10.1155/2008/619832

    Article  CAS  PubMed  Google Scholar 

  35. Dong, F., Ji, Z.-B., Chen, C.-X., Wang, G.-Z., & Wang, J.-M. (2013). Target gene and function prediction of differentially expressed microRNAs in lactating mammary glands of dairy goats. International Journal of Genomics, 2013, 1–13.

    Article  Google Scholar 

  36. Dai, X., & Zhao, P. X. (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research, 39(2), 155–159.

    Article  Google Scholar 

  37. Ni, W.-J., & Leng, X.-M. (2015). Dynamic miRNA–mRNA paradigms: New faces of miRNAs. Biochemistry and Biophysics Reports, 4, 337–341. https://doi.org/10.1016/j.bbrep.2015.10.011

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brümmer, A., & Hausser, J. (2014). MicroRNA binding sites in the coding region of mRNAs: Extending the repertoire of post-transcriptional gene regulation. BioEssays, 36(6), 617–626.

    Article  Google Scholar 

  39. Quax, T. E., Claassens, N. J., Söll, D., & van der Oost, J. (2015). Codon bias as a means to fine-tune gene expression. Molecular Cell, 59(2), 149–161.

    Article  CAS  Google Scholar 

  40. Chakraborty, S., Mazumder, T. H., & Uddin, A. (2018). Compositional dynamics and codon usage pattern of BRCA1 gene across nine mammalian species. Genomics. https://doi.org/10.1016/j.ygeno.2018.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wan, X.-F., Zhou, J., & Xu, D. (2006). CodonO: A new informatics method for measuring synonymous codon usage bias within and across genomes. International Journal of General Systems, 35(1), 109–125.

    Article  Google Scholar 

  42. Uddin, A., Paul, N., & Chakraborty, S. (2019). The codon usage pattern of genes involved in ovarian cancer. Annals of the New York Academy of Sciences, 1440(1), 67–78. https://doi.org/10.1111/nyas.14019

    Article  CAS  PubMed  Google Scholar 

  43. Jenkins, G. M., & Holmes, E. C. (2003). The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Research, 92(1), 1–7.

    Article  CAS  Google Scholar 

  44. Wu, Y., Zhao, D., & Tao, J. (2015). Analysis of codon usage patterns in herbaceous peony (Paeonia lactiflora Pall.) based on transcriptome data. Genes, 6(4), 1125–1139.

    Article  CAS  Google Scholar 

  45. Chen, K., & Rajewsky, N. (2006). Natural selection on human microRNA binding sites inferred from SNP data. Nature genetics, 38(12), 1452–1456.

    Article  CAS  Google Scholar 

  46. Simkin, A., Geissler, R., McIntyre, A. B. R., & Grimson, A. (2020). Evolutionary dynamics of microRNA target sites across vertebrate evolution. PLOS Genetics, 16(2), e1008285. https://doi.org/10.1371/journal.pgen.1008285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fang, Z., & Rajewsky, N. (2011). The impact of miRNA target sites in coding sequences and in 3′ UTRs. PLoS ONE, 6(3), e18067.

    Article  CAS  Google Scholar 

  48. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.

    Article  CAS  Google Scholar 

  49. Mullany, L. E., Herrick, J. S., Wolff, R. K., & Slattery, M. L. (2016). MicroRNA Seed region length impact on target messenger RNA expression and survival in colorectal cancer. PLoS ONE, 11(4), e0154177. https://doi.org/10.1371/journal.pone.0154177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chakraborty, S., Paul, S., Nath, D., Choudhury, Y., Ahn, Y., Cho, Y. S., & Uddin, A. (2020). Synonymous codon usage and context analysis of genes associated with pancreatic cancer: Running title: Codon usage of pancreatic cancer genes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 821, 111719.

    Article  CAS  Google Scholar 

  51. Newman, Z. R., Young, J. M., Ingolia, N. T., & Barton, G. M. (2016). Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proceedings of the National Academy of Sciences, 113(10), E1362–E1371.

    Article  CAS  Google Scholar 

  52. Guo, X., Gui, Y., Wang, Y., Zhu, Q.-H., Helliwell, C., & Fan, L. (2008). Selection and mutation on microRNA target sequences during rice evolution. BMC Genomics, 9(1), 454.

    Article  Google Scholar 

  53. Chen, H., Zhang, Z., & Feng, D. (2019). Prediction and interpretation of miRNA-disease associations based on miRNA target genes using canonical correlation analysis. BMC Bioinformatics, 20(1), 404.

    Article  Google Scholar 

  54. O’Day, E., & Lal, A. (2010). MicroRNAs and their target gene networks in breast cancer. Breast Cancer Research, 12(2), 201. https://doi.org/10.1186/bcr2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Assam University, Silchar, Assam, India for providing the necessary facilities in carrying out this research work. Further, the first author (SC) acknowledges the financial support of ICMR (5/13/42/2018/NCD-II), Government of India for partly supporting this research work.

Funding

The research work is partly funded by ICMR (5/13/42/2018/NCD-II), Government of India and partly by Assam University, Silchar, Assam.

Author information

Authors and Affiliations

Authors

Contributions

SC contributed to data curation, conceptualization, project administration, formal analysis, software, visualization, supervision, methodology, and writing reviewing, and editing of the manuscript. DN contributed to data curation, writing of the original draft, analysis of data, and interpretation.

Corresponding author

Correspondence to Supriyo Chakraborty.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest in this study.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12033_2022_491_MOESM1_ESM.docx

Accession numbers of the overexpressed lung cancer genes (coding sequences) targeted by microRNAs: >NM_002458- MUC5B, >NM_024690- MUC16, >NM_000088- COL1A1, >NM_001278074- COL5A1, >NM_001408- CELSR2, >NM_000094- COL7A1, and >NM_001447- FAT2. Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Nath, D. A Study on microRNAs Targeting the Genes Overexpressed in Lung Cancer and their Codon Usage Patterns. Mol Biotechnol 64, 1095–1119 (2022). https://doi.org/10.1007/s12033-022-00491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00491-3

Keywords

Navigation