Skip to main content

Advertisement

Log in

Construction and Quantitative Evaluation of a Tissue-Specific Sleeping Beauty by EDL2-Specific Transposase Expression in Esophageal Squamous Carcinoma Cell Line KYSE-30

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Gene delivery to esophageal tissue could provide novel treatments for diseases, such as cancer. The Sleeping Beauty (SB) transposon system, as a natural and non-viral tool, is efficient at transferring transgene into the human genome for human cell genetic engineering. The plasmid-based SB transposon can insert into chromosomes through an accurate recombinase-mediated mechanism, providing long-term expression of transgene integrated into the target cells. In this study, we aimed to investigate the activity of ED-L2 tissue-specific promoter that was engineered from the Epstein-Barr Virus (EBV) and combined with the hyperactive SB100X transposase to achieve the stable expression of T2-Onc3 transposon in esophageal squamous epithelial cells. Here we constructed an SB transposon-based plasmid system to obtain the stable expression of transposon upon introduction of a hyperactive SB transposase under the control of tissue-specific ED-L2 promoter via the lipid-based delivery method in the cultured esophageal squamous cell carcinoma cells. Among established human and mouse cell lines, the (ED-L2)-SB100X transposase was active only in human esophageal stratified squamous epithelial and differentiated keratinocytes derived from skin (KYSE-30 and HaCaT cell lines), where it revealed high promoter activity. Data offered that the 782 bp sequence of ED-L2 promoter has a key role in its activity in vitro. The (ED-L2)-SB100X transposase mediated stable integration of T2-Onc3 in KYSE-30 cells, thereby providing further evidence of the tissue specificity of ED-L2 promoter. The KYSE-30 cells modified with the SB system integrate on average 187 copies of the T2-Onc3 transposon in its genome. In aggregate, the (ED-L2)-SB100X transposase can be efficiently applied for the tissue-specific stable expression of a transgene in human KYSE-30 cells using SB transposon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data will be available on request.

Abbreviations

SB:

Sleeping Beauty

iPSC:

Induced pluripotent stem cell

GEM:

Genetically engineered model

PB:

PiggyBac

IRs:

Inverted repeats

TSP:

Tissue-specific promoter

EBV:

Epstein-Barr virus

PMA:

Phorbol 12-myristate 13-acetate

gDNA:

Genomic DNA

Ct:

Cycle threshold

ALB:

Albumin

MFI:

Mean florescence intensity

CAG:

CMV enhancer/chicken beta-actin promoter

TF:

Transcription factors

References

  1. Querques, I., et al. (2019). A highly soluble Sleeping Beauty transposase improves control of gene insertion. Nature biotechnology, 37(12), 1502–1512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vigdal, T. J., et al. (2002). Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. Journal of molecular biology, 323(3), 441–452.

    Article  CAS  PubMed  Google Scholar 

  3. Amberger, M., & Ivics, Z. (2020). Latest advances for the sleeping beauty transposon system: 23 years of insomnia but prettier than ever: Refinement and recent innovations of the sleeping beauty transposon system enabling novel, nonviral genetic engineering applications. BioEssays, 42(11), 2000136.

    Article  Google Scholar 

  4. Izsvák, Z., & Ivics, Z. (2004). Sleeping beauty transposition: Biology and applications for molecular therapy. Molecular Therapy, 9(2), 147–156.

    Article  PubMed  Google Scholar 

  5. Katter, K., et al. (2013). Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. The FASEB Journal, 27(3), 930–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hudecek, M., et al. (2017). Going non-viral: The Sleeping Beauty transposon system breaks on through to the clinical side. Critical Reviews in Biochemistry and Molecular Biology, 52(4), 355–380.

    Article  CAS  PubMed  Google Scholar 

  7. Ivics, Z., et al. (2007). Targeted Sleeping Beauty transposition in human cells. Molecular therapy, 15(6), 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  8. Glover, D. J., Lipps, H. J., & Jans, D. A. (2005). Towards safe, non-viral therapeutic gene expression in humans. Nature Reviews Genetics, 6(4), 299–310.

    Article  CAS  PubMed  Google Scholar 

  9. Zayed, H., et al. (2004). Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Molecular Therapy, 9(2), 292–304.

    Article  CAS  PubMed  Google Scholar 

  10. Wilber, A., et al. (2007). Messenger RNA as a source of transposase for sleeping beauty transposon–mediated correction of hereditary tyrosinemia type I. Molecular Therapy, 15(7), 1280–1287.

    Article  CAS  PubMed  Google Scholar 

  11. Jin, Z., et al. (2011). The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene therapy, 18(9), 849–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Furushima, K., et al. (2012). Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat. Genetics, 192(4), 1235–1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cocchiarella, F., et al. (2016). Transcriptionally regulated and nontoxic delivery of the hyperactive Sleeping Beauty transposase. Molecular Therapy-Methods & Clinical Development, 3, 16038.

    Article  Google Scholar 

  14. Izsvák, Z., Ivics, Z., & Plasterk, R. H. (2000). Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. Journal of Molecular Biology, 302(1), 93–102.

    Article  PubMed  Google Scholar 

  15. Staunstrup, N. H., et al. (2009). Hybrid lentivirus-transposon vectors with a random integration profile in human cells. Molecular Therapy, 17(7), 1205–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, K., Kievit, F. M., & Zhang, M. (2016). Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacological Research, 114, 56–66.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, C., et al. (2018). Promoter-operating targeted expression of gene therapy in cancer: Current stage and prospect. Molecular Therapy-Nucleic Acids, 11, 508–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okabe, S. (1999). Gene expression in transgenic mice using neural promoters. Current Protocols in Neuroscience. https://doi.org/10.1002/0471142301.ns0316s07

    Article  Google Scholar 

  19. Miskey, C., et al. (2005). DNA transposons in vertebrate functional genomics. Cellular and Molecular Life Sciences, 62(6), 629–641.

    Article  CAS  PubMed  Google Scholar 

  20. Nakagawa, H., Inomoto, T., & Rustgi, A. K. (1997). A CACCC box-like cis-regulatory element of the Epstein-Barr virus ED-L2 promoter interacts with a novel transcriptional factor in tissue-specific squamous epithelia. Journal of Biological Chemistry, 272(26), 16688–16699.

    Article  CAS  PubMed  Google Scholar 

  21. Mahmoudian, R. A., Farshchian, M., & Abbaszadegan, M. R. (2021). Genetically engineered mouse models of esophageal cancer. Experimental Cell Research, 406(2), 112757.

    Article  CAS  PubMed  Google Scholar 

  22. Nakagawa, H., et al. (1997). The targeting of the cyclin D1 oncogene by an Epstein-Barr virus promoter in transgenic mice causes dysplasia in the tongue, esophagus and forestomach. Oncogene, 14(10), 1185–1190.

    Article  CAS  PubMed  Google Scholar 

  23. Mueller, A., et al. (1997). A transgenic mouse model with cyclin D1 overexpression results in cell cycle, epidermal growth factor receptor, and p53 abnormalities. Cancer Research, 57(24), 5542–5549.

    CAS  PubMed  Google Scholar 

  24. Opitz, O. G., et al. (2002). A mouse model of human oral-esophageal cancer. The Journal of Clinical Investigation, 110(6), 761–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stairs, D. B., et al. (2011). Deletion of p120-catenin results in a tumor microenvironment with inflammation and cancer that establishes it as a tumor suppressor gene. Cancer Cell, 19(4), 470–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kikuchi, K., et al. (2017). Epstein-Barr virus (EBV)-associated epithelial and non-epithelial lesions of the oral cavity. Japanese Dental Science Review, 53(3), 95–109.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dupuy, A. J., et al. (2009). A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice. Cancer Research, 69(20), 8150–8156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, J. H., et al. (2011). High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE, 6(4), e18556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khaleghizadeh, M., et al. (2018). Ectopic expression of human DPPA2 gene in ESCC cell line using retroviral system. Avicenna Journal of Medical Biotechnology, 10(2), 75.

    PubMed  PubMed Central  Google Scholar 

  30. Ayyoob, K., et al. (2016). Authentication of newly established human esophageal squamous cell carcinoma cell line (YM-1) using short tandem repeat (STR) profiling method. Tumor Biology, 37(3), 3197–3204.

    Article  CAS  PubMed  Google Scholar 

  31. Mahmoudian, R. A., Farshchian, M., & Abbaszadegan, M. R. (2020). Evaluation and optimization of lipofectamine 3000 reagents for transient gene expression in KYSE-30 esophagus cancer cell line. Archives of Medical Laboratory Sciences, 6, 1–9.

    Google Scholar 

  32. Mahmoudian, R. A., et al. (2021). Interaction between LINC-ROR and stemness state in gastric cancer cells with helicobacter pylori Infection. Iranian Biomedical Journal, 25(3), 157–168.

    Article  Google Scholar 

  33. Han, X., et al. (2012). Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development. PLoS ONE, 7(8), e43084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C T method. Nature Protocols, 3(6), 1101.

    Article  CAS  PubMed  Google Scholar 

  35. Bustin, S. A., et al. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Oxford University Press.

    Google Scholar 

  36. Raeisossadati, R., et al. (2011). Quantitative analysis of TEM-8 and CEA tumor markers indicating free tumor cells in the peripheral blood of colorectal cancer patients. International Journal of Colorectal Disease, 26(10), 1265–1270.

    Article  PubMed  Google Scholar 

  37. Kawakami, K., Largaespada, D. A., & Ivics, Z. (2017). Transposons as tools for functional genomics in vertebrate models. Trends in Genetics, 33(11), 784–801.

    Article  CAS  PubMed  Google Scholar 

  38. Narayanavari, S. A., et al. (2017). Sleeping Beauty transposition: From biology to applications. Critical Reviews in Biochemistry and Molecular Biology, 52(1), 18–44.

    Article  CAS  PubMed  Google Scholar 

  39. Kuzmin, D., et al. (2010). Novel strong tissue specific promoter for gene expression in human germ cells. BMC Biotechnology, 10(1), 1–10.

    Article  Google Scholar 

  40. Liew, C. G., et al. (2007). Transient and stable transgene expression in human embryonic stem cells. Stem Cells, 25(6), 1521–1528.

    Article  CAS  PubMed  Google Scholar 

  41. Tabar, M. S., et al. (2015). Evaluating electroporation and lipofectamine approaches for transient and stable transgene expressions in human fibroblasts and embryonic stem cells. Cell Journal (Yakhteh), 17(3), 438.

    Google Scholar 

  42. Jenkins, T. D., et al. (1998). Transactivation of the human keratin 4 and Epstein-Barr virus ED-L2 promoters by gut-enriched Krüppel-like factor. Journal of Biological Chemistry, 273(17), 10747–10754.

    Article  CAS  PubMed  Google Scholar 

  43. Jenkins, T. D., Nakagawa, H., & Rustgi, A. K. (1997). The keratinocyte-specific Epstein-Barr virus ED-L2 promoter is regulated by phorbol 12-myristate 13-acetate through twocis-regulatory elements containing E-box and Krüppel-like factor motifs. Journal of Biological Chemistry, 272(39), 24433–24442.

    Article  CAS  PubMed  Google Scholar 

  44. Tétreault, M.-P., et al. (2016). Esophageal expression of active IκB Kinase-β in mice up-regulates tumor necrosis factor and granulocyte-macrophage colony-stimulating factor, promoting inflammation and angiogenesis. Gastroenterology, 150(7), 1609-1619.e11.

    Article  PubMed  Google Scholar 

  45. Tetreault, M. P., et al. (2010). Klf4 overexpression activates epithelial cytokines and inflammation-mediated esophageal squamous cell cancer in mice. Gastroenterology, 139(6), 2124-2134.e9.

    Article  CAS  PubMed  Google Scholar 

  46. Andl, C. D., et al. (2003). Epidermal growth factor receptor mediates increased cell proliferation, migration, and aggregation in esophageal keratinocytes in vitro and in vivo. Journal of Biological Chemistry, 278(3), 1824–1830.

    Article  CAS  PubMed  Google Scholar 

  47. Belur, L. R., et al. (2003). Gene insertion and long-term expression in lung mediated by the Sleeping Beauty transposon system. Molecular Therapy, 8(3), 501–507.

    Article  CAS  PubMed  Google Scholar 

  48. Fong, L. Y., et al. (2003). Combined cyclin D1 overexpression and zinc deficiency disrupts cell cycle and accelerates mouse forestomach carcinogenesis. Cancer Research, 63(14), 4244–4252.

    CAS  PubMed  Google Scholar 

  49. Galla, M., et al. (2011). Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery. Nucleic Acids Research, 39(16), 7147–7160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Izsvák, Z., et al. (2009). Efficient stable gene transfer into human cells by the Sleeping Beauty transposon vectors. Methods, 49(3), 287–297.

    Article  PubMed  Google Scholar 

  51. Dalsgaard, T., et al. (2009). Shielding of sleeping beauty DNA transposon-delivered transgene cassettes by heterologous insulators in early embryonal cells. Molecular Therapy, 17(1), 121–130.

    Article  CAS  PubMed  Google Scholar 

  52. Mátés, L., et al. (2009). Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nature Genetics, 41(6), 753–761.

    Article  PubMed  Google Scholar 

  53. Grabundzija, I., et al. (2010). Comparative analysis of transposable element vector systems in human cells. Molecular Therapy, 18(6), 1200–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lajos, M., et al. (2009). Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nature Genetics, 41, 753–761.

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to thank the personnel of Division of Human Genetics of Avicenna Research Institute and ACECR-Khorasan Razavi Branch for kindest collaboration.

Funding

The results presented in this paper were part of a PhD student thesis that was supported by Mashhad University of Medical Sciences (# 921706).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moein Farshchian or Mohammad Reza Abbaszadegan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest with any person or organization regarding this research.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudian, R.A., Fathi, F., Farshchian, M. et al. Construction and Quantitative Evaluation of a Tissue-Specific Sleeping Beauty by EDL2-Specific Transposase Expression in Esophageal Squamous Carcinoma Cell Line KYSE-30. Mol Biotechnol 65, 350–360 (2023). https://doi.org/10.1007/s12033-022-00490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00490-4

Keywords

Navigation