Skip to main content

Advertisement

Log in

Biodegradable Zn–2Ag–0.04Mg Alloy for Bone Regeneration In Vivo

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

To evaluate the bone regeneration capacity of Zn–2Ag–0.04Mg alloy scaffold in vivo. Zn, Zn–2Ag and Zn–2Ag–0.04Mg scaffolds were implanted in the femur of New Zealand rabbits, and the degradation of the scaffolds and the regeneration of the bone were observed at 6th week and 6th month. Two-dimensional and three-dimensional micro-CT results showed the new bone in Zn–2Ag–0.04Mg alloy scaffold group was significant more than Zn scaffold group, the bone volume in Zn–2Ag–0.04Mg was higher. Moreover, the osteogenic index in the Zn–2Ag–0.04Mg alloy scaffold group was also higher than Zn scaffold group. At 6th month, the scaffold of Zn–2Ag–0.04Mg was smaller than Zn group or Zn–2Ag group. HE staining of the liver, kidney, and heart did not detect any abnormalities, confirmed the biosafety of the Zn–2Ag–0.04Mg alloy scaffold. The Zn–Ag–0.04Mg alloy scaffold exhibits good biocompatibility and bone regeneration ability in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bow, A., Anderson, D. E., & Dhar, M. (2019). Commercially available bone graft substitutes: The impact of origin and processing on graft functionality. Drug Metabolism Reviews, 51(4), 533–544. https://doi.org/10.1080/03602532.2019.1671860

    Article  CAS  PubMed  Google Scholar 

  2. Lobb, D. C., DeGeorge, B. R., Jr., & Chhabra, A. B. (2019). Bone graft substitutes: Current concepts and future expectations. Journal of Hand Surgery, 44(6), 497–505. https://doi.org/10.1016/j.jhsa.2018.10.032

    Article  PubMed  Google Scholar 

  3. Wen, Y., Xun, S., Haoye, M., et al. (2017). 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomaterials Science, 5(9), 1690–1698. https://doi.org/10.1039/c7bm00315c

    Article  CAS  PubMed  Google Scholar 

  4. Qu, H., Fu, H., Han, Z., et al. (2019). Biomaterials for bone tissue engineering scaffolds: A review. RSC Advances, 9(45), 26252–26262. https://doi.org/10.1039/C9RA05214C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rao, S. H., Harini, B., Shadamarshan, R. P. K., et al. (2018). Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. International Journal of Biological Macromolecules, 110, 88–96. https://doi.org/10.1016/j.ijbiomac.2017.09.029

    Article  CAS  PubMed  Google Scholar 

  6. Yunos, D. M., Bretcanu, O., & Boccaccini, A. R. (2008). Polymer–bioceramic composites for tissue engineering scaffolds. Journal of Materials Science, 43(13), 4433–4442. https://doi.org/10.1007/s10853-008-2552-y

    Article  CAS  Google Scholar 

  7. Stevens, M. M. (2008). Biomaterials for bone tissue engineering. Materials Today, 11(5), 18–25. https://doi.org/10.1016/S1369-7021(08)70086-5

    Article  CAS  Google Scholar 

  8. Kolk, A., Handschel, J., Drescher, W., et al. (2012). Current trends and future perspectives of bone substitute materials–from space holders to innovative biomaterials. Journal of Cranio-Maxillofacial Surgery, 40(8), 706–718. https://doi.org/10.1016/j.jcms.2012.01.002

    Article  PubMed  Google Scholar 

  9. Zhang, Y. Q., Li, Y., Liu, H., et al. (2018). Mechanical and biological properties of a biodegradable Mg–Zn–Ca porous alloy. Orthopaedic Surgery, 10(2), 160–168. https://doi.org/10.1111/os.12378

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang, Y., He, C., Dianyu, E., et al. (2020). Mg bone implant: Features, developments and perspectives. Materials & Design, 185, 108259. https://doi.org/10.1016/j.matdes.2019.108259

    Article  CAS  Google Scholar 

  11. Xue, B., Liang, B., Yuan, G., et al. (2019). A pilot study of a novel biodegradable magnesium alloy airway stent in a rabbit model. International Journal of Pediatric Otorhinolaryngology, 117, 88–95. https://doi.org/10.1016/j.ijporl.2018.10.047

    Article  PubMed  Google Scholar 

  12. Hort, N., Huang, Y.-D., Fechner, D., et al. (2010). Magnesium alloys as implant materials–Principles of property design for Mg–RE alloys. Acta Biomaterialia, 6(5), 1714–1725. https://doi.org/10.1016/j.actbio.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  13. Jain, D., Pareek, S., Agarwala, A., et al. (2021). Effect of exposure time on corrosion behavior of zinc-alloy in simulated body fluid solution: Electrochemical and surface investigation. Journal of Materials Research and Technology, 10, 738–751. https://doi.org/10.1016/j.jmrt.2020.12.050

    Article  CAS  Google Scholar 

  14. Wang, X., Shao, X., Dai, T., et al. (2019). In vivo study of the efficacy, biosafety, and degradation of a zinc alloy osteosynthesis system. Acta Biomaterialia, 92, 351–361. https://doi.org/10.1016/j.actbio.2019.05.001

    Article  CAS  PubMed  Google Scholar 

  15. Hou, Y., Jia, G., Yue, R., et al. (2018). Synthesis of biodegradable Zn-based scaffolds using NaCl templates: Relationship between porosity, compressive properties and degradation behavior. Materials Characterization, 137, 162–169. https://doi.org/10.1016/j.matchar.2018.01.033

    Article  CAS  Google Scholar 

  16. Zheng, Y. F., Gu, X. N., & Witte, F. (2014). Biodegradable metals. Materials Science and Engineering, 77, 1–34. https://doi.org/10.1016/j.mser.2014.01.001

    Article  Google Scholar 

  17. Parande, G., Manakari, V., Kopparthy, S. D. S., et al. (2020). A study on the effect of low-cost eggshell reinforcement on the immersion, damping and mechanical properties of magnesium–zinc alloy. Composites Part B: Engineering, 182, 107650. https://doi.org/10.1016/j.compositesb.2019.107650

    Article  CAS  Google Scholar 

  18. Chen, D., He, Y., Tao, H., et al. (2011). Biocompatibility of magnesium–zinc alloy in biodegradable orthopedic implants. International Journal of Molecular Medicine, 28(3), 343–348. https://doi.org/10.3892/ijmm.2011.707

    Article  CAS  PubMed  Google Scholar 

  19. Yang, H., Jia, B., Zhang, Z., et al. (2020). Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature Communications, 11(1), 1–16. https://doi.org/10.1038/s41467-019-14153-7

    Article  CAS  Google Scholar 

  20. Zhang, S., Zhang, X., Zhao, C., et al. (2010). Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomaterialia, 6(2), 626–640. https://doi.org/10.1016/j.actbio.2009.06.028

    Article  CAS  PubMed  Google Scholar 

  21. Hu, G., Zeng, L., Du, H., et al. (2017). The formation mechanism and bio-corrosion properties of Ag/HA composite conversion coating on the extruded Mg–2Zn–1Mn–0.5 Ca alloy for bone implant application. Surface and Coatings Technology, 325, 127–135. https://doi.org/10.1016/j.surfcoat.2017.06.023

    Article  CAS  Google Scholar 

  22. Xie, Y., Zhao, L., Zhang, Z., et al. (2018). Fabrication and properties of porous Zn-Ag alloy scaffolds as biodegradable materials. Materials Chemistry and Physics, 219, 433–443. https://doi.org/10.1016/j.matchemphys.2018.08.023

    Article  CAS  Google Scholar 

  23. Wu, H., Xie, X., Wang, J., et al. (2021). Biological properties of Zn–0.04Mg–2Ag: A new degradable zinc alloy scaffold for repairing large-scale bone defects. Journal of Materials Research and Technology, 13, 1779–1789. https://doi.org/10.1016/j.jmrt.2021.05.096

    Article  CAS  Google Scholar 

  24. Zhang, N., Zhao, D., Liu, N., et al. (2018). Assessment of the degradation rates and effectiveness of different coated Mg–Zn–Ca alloy scaffolds for in vivo repair of critical-size bone defects. Journal of Materials Science: Materials in Medicine, 29(9), 1–11. https://doi.org/10.1007/s10856-018-6145-2

    Article  CAS  Google Scholar 

  25. Lane, J. M., & Sandhu, H. S. (1987). Current approaches to experimental bone grafting. Orthopedic Clinics of North America, 18(2), 213–225. https://doi.org/10.1016/S0030-5898(20)30385-0

    Article  CAS  PubMed  Google Scholar 

  26. Garbo, C., Locs, J., D’Este, M., et al. (2020). Advanced Mg, Zn, Sr, Si multi-substituted hydroxyapatites for bone regeneration. International Journal of Nanomedicine, 15, 1037. https://doi.org/10.2147/IJN.S226630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jia, B., Yang, H., Zhang, Z., et al. (2021). Biodegradable Zn–Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies. Bioactive Materials, 6(6), 1588–1604. https://doi.org/10.1016/j.bioactmat.2020.11.007

    Article  CAS  PubMed  Google Scholar 

  28. Zhuang, Y., Liu, Q., Jia, G., et al. (2020). A biomimetic Zinc alloy scaffold coated with brushite for enhanced cranial bone regeneration. ACS Biomaterials Science & Engineering, 7(3), 893–903. https://doi.org/10.1021/acsbiomaterials

    Article  Google Scholar 

  29. Bobby Kannan, M., Chappell, J., Khakbaz, H., et al. (2020). Biodegradable 3D porous zinc alloy scaffold for bone fracture fixation devices. Medical Devices & Sensors, 3(6), e10108. https://doi.org/10.1002/mds3.10108

    Article  CAS  Google Scholar 

  30. Wang, H., Guan, S., Wang, Y., et al. (2011). In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg–Zn–Ca alloy for bone implant application. Colloids and Surfaces B: Biointerfaces, 88(1), 254–259. https://doi.org/10.1016/j.colsurfb.2011.06.040

    Article  CAS  PubMed  Google Scholar 

  31. Chen, S., Guan, S., Li, W., et al. (2012). In vivo degradation and bone response of a composite coating on Mg–Zn–Ca alloy prepared by microarc oxidation and electrochemical deposition. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100(2), 533–543. https://doi.org/10.1002/jbm.b.31982

    Article  CAS  Google Scholar 

  32. Wu, Y., Wang, Y., Zhao, D., et al. (2019). In vivo study of microarc oxidation coated Mg alloy as a substitute for bone defect repairing: Degradation behavior, mechanical properties, and bone response. Colloids and Surfaces B: Biointerfaces, 181, 349–359. https://doi.org/10.1016/j.colsurfb.2019.05.052

    Article  CAS  PubMed  Google Scholar 

  33. Kraus, T., Fischerauer, S. F., Hänzi, A. C., et al. (2012). Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomaterialia, 8(3), 1230–1238. https://doi.org/10.1016/j.actbio.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  34. Hou, R., Victoria-Hernandez, J., Jiang, P., et al. (2019). In vitro evaluation of the ZX11 magnesium alloy as potential bone plate: Degradability and mechanical integrity. Acta Biomaterialia, 97, 608–622. https://doi.org/10.1016/j.actbio.2019.07.053

    Article  CAS  PubMed  Google Scholar 

  35. Guo, Y., Yu, Y., Han, L., et al. (2019). Biocompatibility and osteogenic activity of guided bone regeneration membrane based on chitosan-coated magnesium alloy. Materials Science and Engineering C, 100, 226–235. https://doi.org/10.1016/j.msec.2019.03.006

    Article  CAS  PubMed  Google Scholar 

  36. Williams, D. (2003). Revisiting the definition of biocompatibility. Medical Device Technology, 14(8), 10–13. https://doi.org/10.1016/j.biomaterials.2008.04.023

    Article  CAS  PubMed  Google Scholar 

  37. Whitfield, J. B., Dy, V., McQuilty, R., et al. (2010). Genetic effects on toxic and essential elements in humans: Arsenic, cadmium, copper, lead, mercury, selenium, and zinc in erythrocytes. Environmental Health Perspectives, 118(6), 776–782. https://doi.org/10.1289/ehp.0901541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vojtěch, D., Kubásek, J., Šerák, J., et al. (2011). Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomaterialia, 7(9), 3515–3522. https://doi.org/10.1016/j.actbio.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  39. Pati, R., Mehta, R. K., Mohanty, S., et al. (2014). Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine, 10(6), 1195–1208. https://doi.org/10.1016/j.nano.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  40. Hu, C., Chen, C., & Zhang, M. (2021). Effects of Ag content and heat treatment on the microstructure and properties of SLMed AZ61 Mg–Al–Zn alloy. Applied Physics A, 127(3), 1–16. https://doi.org/10.1007/s00339-021-04331-0

    Article  CAS  Google Scholar 

  41. Sikder, P., Bhaduri, S. B., Ong, J. L., et al. (2020). Silver (Ag) doped magnesium phosphate microplatelets as next-generation antibacterial orthopedic biomaterials. Journal of Biomedical Materials Research Part B, 108(3), 976–989. https://doi.org/10.1002/jbm.b.34450

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No. 2019D01B06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Liao or Feng Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xia, H., Fan, X. et al. Biodegradable Zn–2Ag–0.04Mg Alloy for Bone Regeneration In Vivo. Mol Biotechnol 64, 928–935 (2022). https://doi.org/10.1007/s12033-022-00474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00474-4

Keywords

Navigation