Skip to main content
Log in

Identification of a Novel Alditol Oxidase from Thermopolyspora flexuosa with Potential Application in d-Glyceric Acid Production

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Glycerol is a potential sustainable feedstock, and biorefining processes to convert glycerol into value-added chemicals have been developed over the past decade. Alditol oxidase (AldO) is capable of selectively oxidizing the primary hydroxyl groups of alditols such as glycerol. In this study, a new FAD-binding protein from Thermopolyspora flexuosa was expressed and identified as a novel alditol oxidase (AldOT. fle). AldOT. fle displayed the optimal activity at pH 8.0 and 25 °C. AldOT. fle was not metal-dependent, but the activity was completely inhibited by Fe3+. AldOT. fle had a wide substrate specificity and high catalytic efficiency for glycerol. Furthermore, the recombinant AldOT. fle could produce d-glyceric acid from glycerol with a conversion rate ranging from 86.6% (5 mM glycerol) to 20.5% (500 mM glycerol). The recombinant E. coli with AldOT. fle could also produce 23.8 mM d-glyceric acid from 100 mM glycerol. The recombinant AldOT. fle had the potential to produce other aldehyde products by selectively oxidizing the hydroxyl groups of alditols and many other commodity chemicals by redesigning glycerol metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siles López, J. Á., Martín Santos, M. D. L. Á., Chica Pérez, A. F., & Martín Martín, A. (2009). Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresource Technology, 100, 5609–5615.

    Article  Google Scholar 

  2. Ricapito, N. G., Ghobril, C., Zhang, H., Grinstaff, M. W., & Putnam, D. (2016). Synthetic biomaterials from metabolically derived synthons. Chemical Review, 116, 2664–2704.

    Article  CAS  Google Scholar 

  3. Clomburg, J. M., & Gonzalez, R. (2013). Anaerobic fermentation of glycerol: A platform for renewable fuels and chemicals. Trends in Biotechnology, 31, 20–28.

    Article  CAS  Google Scholar 

  4. Kumar, L. R., Yellapu, S. K., Tyagi, R. D., & Zhang, X. (2019). A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production. Bioresource Technology, 293, 122155.

    Article  CAS  Google Scholar 

  5. Cornejo, A., Barrio, I., Campoy, M., Lázaro, J., & Navarrete, B. (2017). Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review. Renewable & Sustainable Energy Reviews, 79, 1400–1413.

    Article  Google Scholar 

  6. Uprety, B. K., Dalli, S. S., & Rakshit, S. K. (2017). Bioconversion of crude glycerol to microbial lipid using a robust oleaginous yeast Rhodosporidium toruloides ATCC 10788 capable of growing in the presence of impurities. Energy Conversion and Management, 135, 117–128.

    Article  CAS  Google Scholar 

  7. Nanda, M. R., Zhang, Y. S., Yuan, Z. S., Qin, W. S., Ghaziaskar, H. S., & Xu, C. B. (2016). Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: A review. Renewable & Sustainable Energy Reviews, 56, 1022–1031.

    Article  CAS  Google Scholar 

  8. Ning, X. M., Li, Y. H., Yu, H., Peng, F., Wang, H. J., & Yang, Y. H. (2016). Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone. Journal of Catalysis, 335, 95–104.

    Article  CAS  Google Scholar 

  9. Wang, W., Jing, W. L., Sheng, L., Chai, D., Kang, Y. M., & Lei, Z. Q. (2017). Pd3Cu coupling with nitrogen-doped mesoporous carbon to boost performance in glycerol oxidation. Applied Catalysis A-General, 538, 123–130.

    Article  CAS  Google Scholar 

  10. Kumar, G. S., Wee, Y., Lee, I., Sun, H. J., Zhao, X., Xia, S., Kim, S., Lee, J., Wang, P., & Kim, J. (2015). Stabilized glycerol dehydrogenase for the conversion of glycerol to dihydroxyacetone. Chemical Engineering Journal, 276, 283–288.

    Article  CAS  Google Scholar 

  11. van Hellemond, E. W., Leferink, N. G. H., Heuts, D. P. H. M., Fraaije, M. W., & van Berkel, W. J. H. (2006). Occurrence and biocatalytic potential of carbohydrate oxidases. Advances in Applied Microbiology, 60, 17–54.

    Article  Google Scholar 

  12. Heuts, D. P. H. M., van Hellemond, E. W., Janssen, D. B., & Fraaije, M. W. (2007). Discovery, characterization, and kinetic analysis of an alditol oxidase from Streptomyces coelicolor*. Journal of Biological Chemistry, 282, 20283–20291.

    Article  CAS  Google Scholar 

  13. Chen, Z., Li, Z. J., Li, F., Wang, N., & Gao, X.-D. (2020). Characterization of alditol oxidase from Streptomyces coelicolor and its application in the production of rare sugars. Bioorganic & Medicinal Chemistry, 28, 115464.

    Article  CAS  Google Scholar 

  14. Li, Z. J., Li, F., Cai, L., Chen, Z., Qin, L., & Gao, X.-D. (2020). One-pot multienzyme synthesis of rare ketoses from glycerol. Journal of Agricultural and Food Chemistry, 68, 1347–1353.

    Article  CAS  Google Scholar 

  15. Gerstenbruch, S., Wulf, H., Mussmann, N., O’Connell, T., Maurer, K. H., & Bornscheuer, U. T. (2012). Asymmetric synthesis of d-glyceric acid by an alditol oxidase and directed evolution for enhanced oxidative activity towards glycerol. Applied Microbiology and Biotechnology, 96, 1243–1252.

    Article  CAS  Google Scholar 

  16. Winter, R. T., Heuts, D. P., Rijpkema, E. M., van Bloois, E., Wijma, H. J., & Fraaije, M. W. (2012). Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B. Applied Microbiology and Biotechnology, 95, 389–403.

    Article  CAS  Google Scholar 

  17. Gao, C., Li, Z., Zhang, L. J., Wang, C., Li, K., Ma, C. Q., & Xu, P. (2015). An artificial enzymatic reaction cascade for a cell-free bio-system based on glycerol. Green Chemistry, 17, 804–807.

    Article  CAS  Google Scholar 

  18. Habe, H., Fukuoka, T., Kitamoto, D., & Sakaki, K. (2009). Biotechnological production of d-glyceric acid and its application. Applied Microbiology and Biotechnology, 84, 445–452.

    Article  CAS  Google Scholar 

  19. Eriksson, C. J., Saarenmaa, T. P., Bykov, I. L., & Heino, P. U. (2007). Acceleration of ethanol and acetaldehyde oxidation by d-glycerate in rats. Metabolism-Clinical and Experimental, 56, 895–898.

    Article  CAS  Google Scholar 

  20. Lesová, K., Sturdíková, M., Proksa, B., Pigos, M., & Liptaj, T. (2001). OR-1–a mixture of esters of glyceric acid produced by Penicillium funiculosum and its antitrypsin activity. Folia Microbiologica, 46, 21–23.

    Article  Google Scholar 

  21. Fong, C., Wells, D., Krodkiewska, I., Booth, J., & Hartley, P. G. (2007). Synthesis and mesophases of glycerate surfactants. Journal of Physical Chemistry B, 111, 1384–1392.

    Article  CAS  Google Scholar 

  22. Rosseto, R., Tcacenco, C. M., Ranganathan, R., & Hajdu, J. (2008). Synthesis of phosphatidylcholine analogues derived from glyceric acid: A new class of biologically active phospholipid compounds. Tetrahedron Letters, 49, 3500–3503.

    Article  CAS  Google Scholar 

  23. Sato, S., Habe, H., Fukuoka, T., Kitamoto, D., & Sakaki, K. (2011). Synthesis of dilinoleoyl-d-glyceric acid and evaluation of its cytotoxicity to human dermal fibroblast and endothelial cells. Journal of Oleo Science, 60, 483–487.

    Article  CAS  Google Scholar 

  24. Zhang, H., Shi, L. L., Lin, J. P., Sun, M., & Wei, D. Z. (2016). Effective improvement of the activity of membrane-bound alcohol dehydrogenase by overexpression of adhS in Gluconobacter oxydans. Biotechnology Letters, 38, 1131–1138.

    Article  CAS  Google Scholar 

  25. Habe, H., Fukuoka, T., Kitamoto, D., & Sakaki, K. (2009). Biotransformation of glycerol to d-glyceric acid by Acetobacter tropicalis. Applied Microbiology and Biotechnology, 81, 1033–1039.

    Article  CAS  Google Scholar 

  26. Habe, H., Sato, S., Fukuoka, T., Kitamoto, D., Yakushi, T., Matsushita, K., & Sakaki, K. (2011). Membrane-bound alcohol dehydrogenase is essential for glyceric acid production in Acetobacter tropicalis. Journal of Oleo Science, 60, 489–494.

    Article  CAS  Google Scholar 

  27. Koike, H., Sato, S., Morita, T., Fukuoka, T., & Habe, H. (2014). Draft genome sequence of Acetobacter tropicalis type strain NBRC16470, a producer of optically pure d-glyceric acid. Genome Announcements, 2, e01329-e1414.

    Article  Google Scholar 

  28. Forneris, F., Heuts, D. P. H. M., Delvecchio, M., Rovida, S., Fraaije, M. W., & Mattevi, A. (2008). Structural analysis of the catalytic mechanism and stereoselectivity in Streptomyces coelicolor alditol oxidase. Biochemistry, 47, 978–985.

    Article  CAS  Google Scholar 

  29. Hou, Y., Hossain, G. S., Li, J. H., Shin, H. D., Du, G. C., Chen, J., & Liu, L. (2017). Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α-keto acids. Biotechnology and Bioengineering, 114, 1928–1936.

    Article  CAS  Google Scholar 

  30. Imlay, J. A. (2019). Where in the world do bacteria experience oxidative stress? Environmental Microbiology, 21, 521–530.

    Article  CAS  Google Scholar 

  31. Korshunov, S., & Imlay, J. A. (2010). Two sources of endogenous hydrogen peroxide in Escherichia coli. Molecular Microbiology, 75, 1389–1401.

    Article  CAS  Google Scholar 

  32. Lv, Y. K., Cheng, X. Z., Du, G. C., Zhou, J. W., & Chen, J. (2017). Engineering of an H2O2 auto-scavenging in vivo cascade for pinoresinol production. Biotechnology and Bioengineering, 114, 2066–2074.

    Article  CAS  Google Scholar 

  33. Guterl, J. K., Garbe, D., Carsten, J., Steffler, F., Sommer, B., Reiße, S., Philipp, A., Haack, M., Rühmann, B., Koltermann, A., Kettling, U., Brück, T., & Sieber, V. (2012). Cell-free metabolic engineering: Production of chemicals by minimized reaction cascades. Chemsuschem, 5, 2165–2172.

    Article  CAS  Google Scholar 

  34. Kim, S., & Lee, S. B. (2006). Catalytic promiscuity in dihydroxy-acid dehydratase from the thermoacidophilic archaeon Sulfolobus solfataricus. Journal of Biochemistry, 139, 591–596.

    Article  CAS  Google Scholar 

  35. Zhan, T., Chen, Q., Zhang, C., Bi, C. H., & Zhang, X. L. (2020). Constructing a novel biosynthetic pathway for the production of glycolate from glycerol in Escherichia coli. ACS Synthetic Biology, 9, 2600–2609.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.32171475, 31971216), the China Postdoctoral Science Foundation (No. 2021M691285), Shandong Provincial Major Scientific and Technological Innovation Project (No. 2019JZZY011006), Natural Science Foundation of Jiangsu Province (No. BK20210465), and Program of Introducing Talents of Discipline to Universities (No. 111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijie Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Fei, K., Hu, Y. et al. Identification of a Novel Alditol Oxidase from Thermopolyspora flexuosa with Potential Application in d-Glyceric Acid Production. Mol Biotechnol 64, 804–813 (2022). https://doi.org/10.1007/s12033-022-00459-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00459-3

Keywords

Navigation