Skip to main content

Advertisement

Log in

miR-135b-5p Targets SIRT1 to Inhibit Deacetylation of c-JUN and Increase MMP7 Expression to Promote Migration and Invasion of Nasopharyngeal Carcinoma Cells

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

NPC is a type of cancer with a poor prognosis. We aim to excavate the regulatory roles of miR-135b-5p in NPC and uncover the underlying mechanism. The levels of miR-135b-5p and Sirtuin 1 (SIRT1) in NPC and normal tissues and cells were tested via quantitative real-time PCR, western blotting, and immunohistochemistry, respectively. The binding relationship between them was predicted with ENCORI databases and validated with dual-luciferase reporter assay. The impact of miR-135b-5p and SIRT1 on the expressions of matrix metalloproteinase 7 (MMP7) and epithelial–mesenchymal transformation (EMT) proteins in NPC cells was evaluated by western blotting. Metastasis of NPC cells was evaluated by Transwell assay. The binding of c-JUN at the MMP7 promoter and deacetylation of c-JUN were examined using chromatin-immunoprecipitation and co-immunoprecipitation, respectively. The level of miR-135b-5p was increased and SIRT1 was decreased in NPC tissues and cells. miR-135b-5p was validated to target SIRT1. Silencing of miR-135b-5p accelerated EMT and metastasis of NPC cells, whereas knockdown of SIRT1 showed opposite results. Notably, knockdown of SIRT1 partially reversed the miR-135b-5p-induced change of EMT markers and metastasis of NPC cells. Mechanistically, miR-135b-5p disrupted SIRT1-induced deacetylation of c-JUN to promote the activation of MMP7 in NPC cells. miR-135b-5p targeted SIRT1 to inhibit deacetylation of c-JUN and increase MMP7 expression to promote malignancy of NPC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

Abbreviations

NPC:

Nasopharyngeal carcinoma

qRT-PCR:

Quantitative real-time PCR

miRs/miRNAs:

MicroRNAs

DLR:

Dual-luciferase reporter

IHC:

Immunohistochemistry

EBV:

Epstein-Barr virus

EMT:

Epithelial–mesenchymal transformation

SIRT1:

Sirtuin 1

Sir2:

Silent information regulator 2

MMP7:

Matrix metalloproteinase 7

RFS:

Relapse-free survival

ECM:

Extracellular matrix

ChIP:

Chromatin-immunoprecipitation

Co-IP:

Co-immunoprecipitation

References

  1. Mahdavifar, N., Ghoncheh, M., Mohammadian-Hafshejani, A., Khosravi, B., & Salehiniya, H. (2016). Epidemiology and inequality in the incidence and mortality of nasopharynx cancer in Asia. Osong Public Health and Research Perspectives, 7, 360–372.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jia, W. H., Collins, A., Zeng, Y. X., Feng, B. J., Yu, X. J., Huang, L. X., Feng, Q. S., Huang, P., Yao, M. H., & Shugart, Y. Y. (2005). Complex segregation analysis of nasopharyngeal carcinoma in Guangdong, China: Evidence for a multifactorial mode of inheritance (complex segregation analysis of NPC in China). European Journal of Human Genetics, 13, 248–252.

    Article  CAS  PubMed  Google Scholar 

  3. Xu, F. H., Xiong, D., Xu, Y. F., Cao, S. M., Xue, W. Q., Qin, H. D., Liu, W. S., Cao, J. Y., Zhang, Y., Feng, Q. S., Chen, L. Z., Li, M. Z., Liu, Z. W., Liu, Q., Hong, M. H., Shugart, Y. Y., Zeng, Y. X., Zeng, M. S., & Jia, W. H. (2012). An epidemiological and molecular study of the relationship between smoking, risk of nasopharyngeal carcinoma, and Epstein-Barr virus activation. Journal of the National Cancer Institute, 104, 1396–1410.

    Article  CAS  PubMed  Google Scholar 

  4. Ma, J., Mai, H. Q., Hong, M. H., Cui, N. J., Lu, T. X., Lu, L. X., Mo, H. Y., & Min, H. Q. (2001). Is the 1997 AJCC staging system for nasopharyngeal carcinoma prognostically useful for Chinese patient populations? International Journal of Radiation Oncology, Biology, Physics, 50, 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  5. Lai, S. Z., Li, W. F., Chen, L., Luo, W., Chen, Y. Y., Liu, L. Z., Sun, Y., Lin, A. H., Liu, M. Z., & Ma, J. (2011). How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? International Journal of Radiation Oncology, Biology, Physics, 80, 661–668.

    Article  PubMed  Google Scholar 

  6. Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15, 509–524.

    Article  CAS  PubMed  Google Scholar 

  7. Didiano, D., & Hobert, O. (2008). Molecular architecture of a miRNA-regulated 3′ UTR. RNA (New York, NY), 14, 1297–1317.

    Article  CAS  Google Scholar 

  8. Rupaimoole, R., Calin, G. A., Lopez-Berestein, G., & Sood, A. K. (2016). miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discovery, 6, 235–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Han, X., Saiyin, H., Zhao, J., Fang, Y., Rong, Y., Shi, C., Lou, W., & Kuang, T. (2017). Overexpression of miR-135b-5p promotes unfavorable clinical characteristics and poor prognosis via the repression of SFRP4 in pancreatic cancer. OncoTarget, 8, 62195–62207.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu, Z., Han, Y., Liu, J., Jiang, F., Hu, H., Wang, Y., Liu, Q., Gong, Y., & Li, X. (2015). miR-135b-5p and miR-499a-3p promote cell proliferation and migration in atherosclerosis by directly targeting MEF2C. Scientific Reports, 5, 12276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, Z., Gao, Y., Gao, S., Song, D., & Feng, Y. (2020). miR-135b-5p promotes viability, proliferation, migration and invasion of gastric cancer cells by targeting Krüppel-like factor 4 (KLF4). Archives of Medical Science, 16, 167–176.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, Z., Che, X., Yang, N., Bai, Z., Wu, Y., Zhao, L., & Pei, H. (2017). miR-135b-5p promotes migration, invasion and EMT of pancreatic cancer cells by targeting NR3C2. Biomedicine and Pharmacotherapy, 96, 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  13. Sreedharan, L., Mayne, G. C., Watson, D. I., Bright, T., Lord, R. V., Ansar, A., Wang, T., Kist, J., Astill, D. S., & Hussey, D. J. (2017). MicroRNA profile in neosquamous esophageal mucosa following ablation of Barrett’s esophagus. World Journal of Gastroenterology, 23, 5508–5518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang, J. F., Yu, Z. H., Liu, T., Lin, Z. Y., Wang, Y. H., Yang, L. W., He, H. J., Cao, J., Huang, H. L., & Liu, G. (2014). Five miRNAs as novel diagnostic biomarker candidates for primary nasopharyngeal carcinoma. Asian Pacific Journal of Cancer Prevention, 15, 7575–7581.

    Article  PubMed  Google Scholar 

  15. Haigis, M. C., & Sinclair, D. A. (2010). Mammalian sirtuins: Biological insights and disease relevance. Annual Review of Pathology, 5, 253–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dai, Y., & Faller, D. V. (2008). Transcription regulation by Class III histone deacetylases (HDACs)-sirtuins. Translational Oncogenomics, 3, 53–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, R. H., Sengupta, K., Li, C., Kim, H. S., Cao, L., Xiao, C., Kim, S., Xu, X., Zheng, Y., Chilton, B., Jia, R., Zheng, Z. M., Appella, E., Wang, X. W., Ried, T., & Deng, C. X. (2008). Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell, 14, 312–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buhrmann, C., Shayan, P., Popper, B., Goel, A., & Shakibaei, M. (2016). Sirt1 is required for resveratrol-mediated chemopreventive effects in colorectal cancer cells. Nutrients, 8, 145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sun, L., Li, H., Chen, J., Iwasaki, Y., Kubota, T., Matsuoka, M., Shen, A., Chen, Q., & Xu, Y. (2013). PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells. Journal of Cell Science, 126, 3939–3947.

    Article  CAS  PubMed  Google Scholar 

  20. Dong, G., Wang, B., An, Y., Li, J., Wang, X., Jia, J., & Yang, Q. (2018). SIRT1 suppresses the migration and invasion of gastric cancer by regulating ARHGAP5 expression. Cell Death and Disease, 9, 977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Schütte, J., Minna, J. D., & Birrer, M. J. (1989). Deregulated expression of human c-jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms rat-1a cells as a single gene. Proceedings of the National Academy of Sciences of the United States of America, 86, 2257–2261.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eferl, R., Ricci, R., Kenner, L., Zenz, R., David, J. P., Rath, M., & Wagner, E. F. (2003). Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell, 112, 181–192.

    Article  CAS  PubMed  Google Scholar 

  23. Banday, M. Z., Sameer, A. S., Mir, A. H., Mokhdomi, T. A., Chowdri, N. A., & Haq, E. (2016). Matrix metalloproteinase (MMP)-2, -7 and -9 promoter polymorphisms in colorectal cancer in ethnic Kashmiri population—A case–control study and a mini review. Gene, 589, 81–89.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Q., Liu, S., Parajuli, K. R., Zhang, W., Zhang, K., Mo, Z., Liu, J., Chen, Z., Yang, S., Wang, A. R., Myers, L., & You, Z. (2017). Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene, 36, 687–699.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, J., Kwong, D. L., Zhu, C. L., Chen, L. L., Dong, S. S., Zhang, L. Y., Tian, J., Qi, C. B., Cao, T. T., Wong, A. M., Kong, K. L., Li, Y., Liu, M., Fu, L., & Guan, X. Y. (2012). RBMS3 at 3p24 inhibits nasopharyngeal carcinoma development via inhibiting cell proliferation, angiogenesis, and inducing apoptosis. PLoS ONE, 7, e44636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wong, A. M., Kong, K. L., Chen, L., Liu, M., Wong, A. M., Zhu, C., Tsang, J. W., & Guan, X. Y. (2013). Characterization of CACNA2D3 as a putative tumor suppressor gene in the development and progression of nasopharyngeal carcinoma. International Journal of Cancer, 133, 2284–2295.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, I. C., Chiang, W. F., Huang, H. H., Chen, P. F., Shen, Y. Y., & Chiang, H. C. (2014). Role of SIRT1 in regulation of epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis. Molecular Cancer, 13, 254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Liu, D., Wang, Y., Zhao, Y., & Gu, X. (2020). LncRNA SNHG5 promotes nasopharyngeal carcinoma progression by regulating miR-1179/HMGB3 axis. BMC Cancer, 20, 178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., Guarente, L., & Weinberg, R. A. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 107, 149–159.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, J., Lee, S. M., Shannon, S., Gao, B., Chen, W., Chen, A., Divekar, R., McBurney, M. W., Braley-Mullen, H., Zaghouani, H., & Fang, D. (2009). The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. The Journal of Clinical Investigation, 119, 3048–3058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stoker, S. D., van Diessen, J. N., de Boer, J. P., Karakullukcu, B., Leemans, C. R., & Tan, I. B. (2013). Current treatment options for local residual nasopharyngeal carcinoma. Current Treatment Options in Oncology, 14, 475–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei, P., Niu, M., Pan, S., Zhou, Y., Shuai, C., Wang, J., Peng, S., & Li, G. (2014). Cancer stem-like cell: A novel target for nasopharyngeal carcinoma therapy. Stem Cell Research and Therapy, 5, 44.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu, N., Tang, L. L., Sun, Y., Cui, R. X., Wang, H. Y., Huang, B. J., He, Q. M., Jiang, W., & Ma, J. (2013). miR-29c suppresses invasion and metastasis by targeting TIAM1 in nasopharyngeal carcinoma. Cancer Letters, 329, 181–188.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, N., Jiang, N., Guo, R., Jiang, W., He, Q. M., Xu, Y. F., Li, Y. Q., Tang, L. L., Mao, Y. P., Sun, Y., & Ma, J. (2013). miR-451 inhibits cell growth and invasion by targeting MIF and is associated with survival in nasopharyngeal carcinoma. Molecular Cancer, 12, 123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang, X., Chen, L., Jin, H., Wang, S., Zhang, Y., Tang, X., & Tang, G. (2016). Screening miRNAs for early diagnosis of colorectal cancer by small RNA deep sequencing and evaluation in a Chinese patient population. OncoTargets and Therapy, 9, 1159–1166.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lauvrak, S. U., Munthe, E., Kresse, S. H., Stratford, E. W., Namløs, H. M., Meza-Zepeda, L. A., & Myklebost, O. (2013). Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes. British Journal of Cancer, 109, 2228–2236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pu, T., Shen, M., Li, S., Yang, L., Gao, H., Xiao, L., Zhong, X., Zheng, H., Liu, Y., Ye, F., & Bu, H. (2019). Repression of miR-135b-5p promotes metastasis of early-stage breast cancer by regulating downstream target SDCBP. Laboratory Investigation: A Journal of Technical Methods and Pathology, 99, 1296–1308.

    Article  CAS  Google Scholar 

  38. Eades, G., Yao, Y., Yang, M., Zhang, Y., Chumsri, S., & Zhou, Q. (2011). miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. The Journal of Biological Chemistry, 286, 25992–26002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, N., Cheng, H., Mo, Q., Zhou, X., & Xie, M. (2020). miR-155-5p downregulation inhibits epithelial-to-mesenchymal transition by targeting SIRT1 in human nasal epithelial cells. Molecular Medicine Reports, 22, 3695–3704.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu, M., Huang, Y., Sun, W., Li, P., Li, L., & Li, L. (2018). miR-135b-5p promotes gastric cancer progression by targeting CMTM3. International Journal of Oncology, 52, 589–598.

    CAS  PubMed  Google Scholar 

  41. Li, Z., Qin, Y., Chen, P., Luo, Q., Shi, H., & Jiang, X. (2020). miR-135b-5p enhances the sensitivity of HER-2 positive breast cancer to trastuzumab via binding to cyclin D2. International Journal of Molecular Medicine, 46, 1514–1524.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Simic, P., Williams, E. O., Bell, E. L., Gong, J. J., Bonkowski, M., & Guarente, L. (2013). SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Reports, 3, 1175–1186.

    Article  CAS  PubMed  Google Scholar 

  43. Li, L., Zhang, H. N., Chen, H. Z., Gao, P., Zhu, L. H., Li, H. L., Lv, X., Zhang, Q. J., Zhang, R., Wang, Z., She, Z. G., Zhang, R., Wei, Y. S., Du, G. H., Liu, D. P., & Liang, C. C. (2011). SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circulation Research, 108, 1180–1189.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

YC performed all of the work of this research and gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Yali Cheng.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethical Approval

The methodologies of this research were approved by the Ethics Committee of The First Affiliated Hospital of Shandong First Medical University and obeyed the principles of the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y. miR-135b-5p Targets SIRT1 to Inhibit Deacetylation of c-JUN and Increase MMP7 Expression to Promote Migration and Invasion of Nasopharyngeal Carcinoma Cells. Mol Biotechnol 64, 693–701 (2022). https://doi.org/10.1007/s12033-022-00457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00457-5

Keywords

Navigation