Skip to main content
Log in

Fabrication and Molecular Modeling of Navette-Shaped Fullerene Nanorods Using Tobacco Mosaic Virus as a Nanotemplate

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

To date, metallization studies have been performed with the nanometer-scale template, Tobacco Mosaic Virus (TMV). Here we show that fullerenes as well can be deposited on TMV coat protein in a controlled manner. Two methods were followed for the coating process. First, underivatized fullerene was dispersed in different solvents to bring the underivatized fullerene and wild-type TMV together. Improved depositions were obtained with the fullerene dicarboxylic derivative synthesized via the Bingel method. The form of the coating was analyzed by transmission electron microscopy. Our results demonstrate that the coating efficiency with the carboxy derivative was much better compared to the underivatized fullerene. The goal of coupling a carbon nanoparticle to a biological molecule, the viral coat of TMV, was achieved with the carboxy derivative of fullerene, resulting in the production of navette-shaped nanorods. The interactions between carboxyfullerenes and TMV were investigated through modeling with computational simulations and Gaussian-based density functional theory (DFT) calculations using the Gaussian09 program package. The theoretical calculations supported the experimental findings. This inexpensive and untroublesome method promises new fullerene hybrid nanomaterials in particular shapes and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bittner, A. M. (2005). Biomolecular rods and tubes in nanotechnology. Naturwissenschaften, 92, 51–64. https://doi.org/10.1007/s00114-004-0579-8

    Article  CAS  PubMed  Google Scholar 

  2. Garcia, A. P., Sen, D., & Buehler, M. J. (2011). Hierarchical silica nanostructures inspired by diatom algae yield superior deformability, toughness, and strength. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 42, 3889–3897. https://doi.org/10.1007/s11661-010-0477-y

    Article  CAS  Google Scholar 

  3. Sabah, A., Kumar, P., Mohammed, W. S., & Dutta, J. (2013). Visible-light-induced directed gold microwires by self-organization of nanoparticles on Aspergillus niger. Particle and Particle Systems Characterization, 30, 473–480. https://doi.org/10.1002/ppsc.201200137

    Article  CAS  Google Scholar 

  4. Li, Z., Chung, S.-W., Nam, J.-M., Ginger, D. S., & Mirkin, C. A. (2003). Living templates for the hierarchical assembly of gold nanoparticles. Angewandte Chemie, 115, 2408–2411. https://doi.org/10.1002/ange.200351231

    Article  Google Scholar 

  5. Mark, S. S., Bergkvist, M., Bhatnagar, P., Welch, C., Goodyear, A. L., Yang, X., Angert, E. R., & Batt, C. A. (2007). Thin film processing using S-layer proteins: Biotemplated assembly of colloidal gold etch masks for fabrication of silicon nanopillar arrays. Colloids and Surfaces B: Biointerfaces, 57, 161–173. https://doi.org/10.1016/j.colsurfb.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  6. Schuster, D., Küpcü, S., Belton, D. J., Perry, C. C., Stöger-Pollach, M., Sleytr, U. B., & Pum, D. (2013). Construction of silica-enhanced S-layer protein cages. Acta Biomaterialia, 9, 5689–5697. https://doi.org/10.1016/j.actbio.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  7. Deplanche, K., Woods, R. D., Mikheenko, I. P., Sockett, R. E., & Macaskie, L. E. (2008). Manufacture of stable palladium and gold nanoparticles on native and genetically engineered flagella scaffolds. Biotechnology and Bioengineering, 101, 873–880. https://doi.org/10.1002/bit.21966

    Article  CAS  PubMed  Google Scholar 

  8. Gopinathan, P., Ashok, A. M., & Selvakumar, R. (2013). Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial. Applied Surface Science, 276, 717–722. https://doi.org/10.1016/j.apsusc.2013.03.159

    Article  CAS  Google Scholar 

  9. Djalali, R., Chen, Y.-F., & Matsui, H. (2002). Au nanowire fabrication from sequenced histidine-rich peptide. Journal of the American Chemical Society, 124, 13660–13661. https://doi.org/10.1021/ja028261r

    Article  CAS  PubMed  Google Scholar 

  10. Higashi, N., Takagi, T., & Koga, T. (2010). Layer-by-layer fabrication of well-packed gold nanoparticle assemblies guided by a ß-sheet peptide network. Polymer Journal, 42, 95–99. https://doi.org/10.1038/pj.2009.311

    Article  CAS  Google Scholar 

  11. Mertig, M., Ciacchi, L. C., Seidel, R., Pompe, W., & De Vita, A. (2002). DNA as a selective metallization template. Nano Letters, 2, 841–844. https://doi.org/10.1021/nl025612r

    Article  CAS  Google Scholar 

  12. Reches, M., & Gazit, E. (2003). Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 300, 625–627. https://doi.org/10.1126/science.1082387

    Article  CAS  PubMed  Google Scholar 

  13. Artemyev, M., Kisiel, D., Abmiotko, S., Antipina, M. N., Khomutov, G. B., Kislov, V. V., & Rakhnyanskaya, A. A. (2004). Self-organized, highly luminescent CdSe nanorod-DNA complexes. Journal of the American Chemical Society, 126, 10594–10597. https://doi.org/10.1021/ja048069k

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Z. G., Liu, Q., Li, N., & Ding, B. (2016). DNA-based nanotemplate directed in situ synthesis of silver nanoclusters with specific fluorescent emission: Surface-guided chemical reactions. Chemistry of Materials, 28, 8834–8841. https://doi.org/10.1021/acs.chemmater.6b04150

    Article  CAS  Google Scholar 

  15. Flynn, C. E., Lee, S. W., Peelle, B. R., & Belcher, A. M. (2003). Viruses as vehicles for growth, organization and assembly of materials. Acta Materialia, 51, 5867–5880. https://doi.org/10.1016/j.actamat.2003.08.031

    Article  CAS  Google Scholar 

  16. Ghosh, D., Lee, Y., Thomas, S., Kohli, A. G., Yun, D. S., Belcher, A. M., & Kelly, K. A. (2012). M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nature Nanotechnology, 7, 677–682. https://doi.org/10.1038/nnano.2012.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Slocik, J. M., Naik, R. R., Stone, M. O., & Wright, D. W. (2005). Viral templates for gold nanoparticle synthesis. Journal of Materials Chemistry, 15, 749–753. https://doi.org/10.1039/b413074j

    Article  CAS  Google Scholar 

  18. Evans, D. J. (2010). Bionanoscience at the plant virus-inorganic chemistry interface. Inorganica Chimica Acta, 363, 1070–1076. https://doi.org/10.1016/j.ica.2009.10.007

    Article  CAS  Google Scholar 

  19. Chen, C., Daniel, M.-C., Quinkert, Z. T., De, M., Stein, B., Bowman, V. D., Chipman, P. R., Rotello, V. M., Cheng Kao, C., & Dragnea, B. (2006). Nanoparticle-templated assembly of viral protein cages. Nano Letters, 6(4), 611–615. https://doi.org/10.1021/nl0600878

    Article  CAS  PubMed  Google Scholar 

  20. Barnhill, H. N., Reuther, R., Ferguson, P. L., Dreher, T., & Wang, Q. (2007). Turnip yellow mosaic virus as a chemoaddressable bionanoparticle. Bioconjugate Chemistry, 18, 852–859. https://doi.org/10.1021/bc060391s

    Article  CAS  PubMed  Google Scholar 

  21. Dujardin, E., Peet, C., Stubbs, G., Culver, J. N., & Mann, S. (2003). Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Letters, 3, 413–417. https://doi.org/10.1021/nl034004o

    Article  CAS  Google Scholar 

  22. Lewis, C. L., Lin, Y., Yang, C., Manocchi, A. K., Yuet, K. P., Doyle, P. S., & Yi, H. (2010). Microfluidic fabrication of hydrogel microparticles containing functionalized viral nanotemplates. Langmuir, 26, 13436–13441. https://doi.org/10.1021/la102446n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, K. Z., Basnayake Pussepitiyalage, V., Lee, Y. H., Loesch-Fries, L. S., Harris, M. T., Hemmati, S., & Solomon, K. V. (2021). Engineering tobacco mosaic virus and its virus-like-particles for synthesis of biotemplated nanomaterials. Biotechnology Journal, 16, 2000311. https://doi.org/10.1002/biot.202000311

    Article  CAS  Google Scholar 

  24. Yi, H., Nisar, S., Lee, S.-Y., Powers, M. A., Bentley, W. E., Payne, G. F., Ghodssi, R., Rubloff, G. W., Harris, M. T., & Culver, J. N. (2005). Patterned assembly of genetically modified viral nanotemplates via nucleic acid hybridization. Nano Letters, 5, 1931–1936. https://doi.org/10.1021/nl051254r

    Article  CAS  PubMed  Google Scholar 

  25. Alonso, J. M., Górzny, M. Ł, & Bittner, A. M. (2013). The physics of tobacco mosaic virus and virus-based devices in biotechnology. Trends in Biotechnology, 31(9), 530–538. https://doi.org/10.1016/j.tibtech.2013.05.013

    Article  CAS  PubMed  Google Scholar 

  26. Li, S., Dharmarwardana, M., Welch, R. P., Ren, Y., Thompson, C. M., Smaldone, R. A., & Gassensmith, J. J. (2016). Template-directed synthesis of porous and protective core–shell bionanoparticles. Angewandte Chemie (International ed. in English), 55(36), 10691–10696. https://doi.org/10.1002/anie.201604879

    Article  CAS  Google Scholar 

  27. Guo, J., Lin, Y., & Wang, Q. (2019). Development of nanotubes coated with platinum nanodendrites using a virus as a template. Nanotechnology, 31(1), 015502. https://doi.org/10.1088/1361-6528/ab4448

    Article  CAS  PubMed  Google Scholar 

  28. Yuejun, Q., Yang, Y., Renjie, D., & Zhao, M. (2020). Peroxidase activities of gold nanowires synthesized by TMV as template and their application in detection of cancer cells. Applied Microbiology and Biotechnology, 104(9), 3947–3957. https://doi.org/10.1007/s00253-020-10520-3

    Article  CAS  Google Scholar 

  29. Yang, Y., Yang, K., Wang, J., Cui, D., & Zhao, M. (2021). Fabrication and characterization of CdS nanowires templated in tobacco mosaic virus with improved photocatalytic ability. Applied Microbiology and Biotechnology, 105(21–22), 8255–8264. https://doi.org/10.1007/s00253-021-11596-1

    Article  CAS  PubMed  Google Scholar 

  30. Bruckman, M. A., Vanmeter, A., & Steinmetz, N. F. (2015). Nanomanufacturing of tobacco mosaic virus-based spherical biomaterials using a continuous flow method. ACS Biomaterials Science and Engineering, 1, 13–18. https://doi.org/10.1021/ab500059s

    Article  CAS  Google Scholar 

  31. Chu, S., Gerasopoulos, K., & Ghodssi, R. (2016). Tobacco mosaic virus-templated hierarchical Ni/NiO with high electrochemical charge storage performances. Electrochimica Acta, 220, 184–192. https://doi.org/10.1016/j.electacta.2016.10.106

    Article  CAS  Google Scholar 

  32. Powell, M. D., LaCoste, J. D., Fetrow, C. J., Fei, L., & Wei, S. (2021). Bio-derived nanomaterials for energy storage and conversion. Nano Select, 2(9), 1682–1706. https://doi.org/10.1002/nano.202100001

    Article  CAS  Google Scholar 

  33. Zhou, J. C., Soto, C. M., Chen, M. S., Bruckman, M. A., Moore, M. H., Barry, E., Ratna, B. R., Pehrsson, P. E., Spies, B. R., & Confer, T. S. (2012). Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires. Journal of Nanobiotechnology, 10, 18. https://doi.org/10.1186/1477-3155-10-18

    Article  CAS  Google Scholar 

  34. Zhang, J., Zhou, K., Zhang, Y., Du, M., & Wang, Q. (2019). Communication precise self-assembly of nanoparticles into ordered nanoarchitectures directed by tobacco mosaic virus coat protein. Advanced Materials, 31, e1901485. https://doi.org/10.1002/adma.201901485

    Article  CAS  PubMed  Google Scholar 

  35. Atanasova, P., Stitz, N., Sanctis, S., Maurer, J. H., Hoffmann, R. C., Eiben, S., Jeske, H., Schneider, J. J., & Bill, J. (2015). Genetically improved monolayer-forming tobacco mosaic viruses to generate nanostructured semiconducting bio/inorganic hybrids. Langmuir, 31(13), 3897–3903. https://doi.org/10.1021/acs.langmuir.5b00700

    Article  CAS  PubMed  Google Scholar 

  36. Chu, S., Brown, A. D., Culver, J. N., & Ghodssi, R. (2018). Virus-assembled technology for next generation bioenergy harvesting devices. Journal of Physics: Conference Series, 1407, 12029. https://doi.org/10.1088/1742-6596/1407/1/012029

    Article  CAS  Google Scholar 

  37. Holder, P. G., & Francis, M. B. (2007). Integration of a self-assembling protein scaffold with water-soluble single-walled carbon nanotubes. Angewandte Chemie (International ed. in English), 46(23), 4370–4373. https://doi.org/10.1002/ange.200700333

    Article  CAS  Google Scholar 

  38. Hu, H., Yang, Q., Baroni, S., Yang, H., Aime, S., & Steinmetz, N. F. (2019). Polydopamine-decorated tobacco mosaic virus for photoacoustic/magnetic resonance bimodal imaging and photothermal cancer therapy. Nanoscale, 11, 9760–9768. https://doi.org/10.1039/c9nr02065a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ahn, E., Wong, H. S., & Pop, E. (2018). Carbon nanomaterials for non-volatile memories. Nature Reviews Materials, 3, 18009. https://doi.org/10.1038/natrevmats.2018.9

    Article  CAS  Google Scholar 

  40. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318, 162–163. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  41. Graja, A. (2002). Charge-transfer in fullerene complexes. Polish Journal of Chemistry, 76(2–3), 167–176. https://doi.org/10.1002/chin.200220075

    Article  CAS  Google Scholar 

  42. Dugan, L. L., Lovett, E. G., Quick, K. L., Lotharius, J., Lin, T. T., & O’Malley, K. L. (2001). Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism and Related Disorders, 7(3), 243–246. https://doi.org/10.1016/s1353-8020(00)00064-x

    Article  Google Scholar 

  43. Raza, K., Thotakura, N., Kumar, P., Joshi, M., Bhushan, S., Bhatia, A., Kumar, V., Malik, R., Sharma, G., Guru, S. K., & Katare, O. P. (2015). C60-fullerenes for delivery of docetaxel to breast cancer cells: A promising approach for enhanced efficacy and better pharmacokinetic profile. International Journal of Pharmaceutics, 495, 551–559. https://doi.org/10.1016/j.ijpharm.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  44. Alipour, E., Alimohammady, F., Yumashev, A., & Maseleno, A. (2020). Fullerene C60 containing porphyrin-like metal center as drug delivery system for ibuprofen drug. Journal of Molecular Modeling, 26(1), 7. https://doi.org/10.1007/s00894-019-4267-1

    Article  CAS  Google Scholar 

  45. Li, W., Zhao, L., Wei, T., Zhao, Y., & Chen, C. (2011). The inhibition of death receptor mediated apoptosis through lysosome stabilization following internalization of carboxyfullerene nanoparticles. Biomaterials, 32(16), 4030–4041. https://doi.org/10.1016/j.biomaterials.2011.02.008

    Article  CAS  PubMed  Google Scholar 

  46. Kazemzadeh, H., & Mozafari, M. (2019). Fullerene-based delivery systems. Drug Discovery Today, 24(3), 898–905. https://doi.org/10.1016/j.drudis.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  47. Vittala, S.K., Saraswathi, S.K., & Joseph, J. (2019) Self-assembled functional fullerenes and DNA hybrid nanomaterials for various applications, in Templated DNA Nanotechnology, Govindaraju T., Pan Stanford Publishing Taylor & Francis Singapore, pp. 271–300, eBook ISBN 9780429428661

  48. Gooding, G. V., & Hebert, T. T. (1967). A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology, 57(11), 1285. PMID: 6075009.

    PubMed  Google Scholar 

  49. Bingel, C. (1993). Cyclopropanierung von Fullerenen. Chemische Berichte, 126, 1957–1959. https://doi.org/10.1002/cber.19931260829

    Article  CAS  Google Scholar 

  50. Lamparth, I., & Hirsch, A. (1994). Water-soluble malonic acid derivatives of C60 with a defined three-dimensional structure. Journal of the Chemical Society, Chemical Communications, 14, 1727–1728. https://doi.org/10.1039/C39940001727

    Article  Google Scholar 

  51. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M. a., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G. a., Nakatsuji, H., Li, X., Caricato, M., Marenich, a. V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J. V., Izmaylov, a. F., Sonnenberg, J.L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J. a., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T. a., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, a. P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J., 2009. Gaussian09 Revision A.02. Gaussian Inc., Wallingford CT

  52. Cao, T., Wei, F., Yang, Y., Huang, L., Zhao, X., & Cao, W. (2002). Microtribologic properties of a covalently attached nanostructured self-assembly film fabricated from fullerene carboxylic acid and diazoresin. Langmuir, 18(13), 5186–5189. https://doi.org/10.1021/la025691m

    Article  CAS  Google Scholar 

  53. Song, Y., & Cushman, M. (2008). The binding orientation of a norindenoisoquinoline in the topoisomerase I− DNA cleavage complex is primarily governed by π− π stacking interactions. The Journal of Physical Chemistry B, 112(31), 9484–9489. https://doi.org/10.1021/jp8005603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lal, B. (2007). Computational study of enantioselective interaction between C 60 fullerene and its derivatives with L-histidine. Journal of Molecular Modeling, 13(4), 531–536. https://doi.org/10.1007/s00894-007-0179-6

    Article  CAS  PubMed  Google Scholar 

  55. Bendjeddou, A., Abbaz, T., Gouasmia, A. K., & Villemin, D. (2016). Molecular structure, HOMO-LUMO, MEP and Fukui function analysis of some TTF-donor substituted molecules using DFT (B3LYP) calculations. International Research Journal of Pure and Applied Chemistry, 12(1), 1–9. https://doi.org/10.9734/IRJPAC/2016/27066

    Article  CAS  Google Scholar 

Download references

Funding

Ankara Üniversitesi Biyoteknoloji Enstitüsü, BIBAP 05/169, Yaşar Murat Elçin

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaşar Murat Elçin.

Ethics declarations

Conflict of interest

Y.M.E. is the founder and shareholder of Biovalda Health Technologies, Inc. (Ankara, Turkey). The authors declare no competing financial interests in relation to this particular article. The authors are alone responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Supplementary file2 (PPTX 1824 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dönmez Güngüneş, Ç., Başçeken, S., Elçin, A.E. et al. Fabrication and Molecular Modeling of Navette-Shaped Fullerene Nanorods Using Tobacco Mosaic Virus as a Nanotemplate. Mol Biotechnol 64, 681–692 (2022). https://doi.org/10.1007/s12033-021-00440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00440-6

Keywords

Navigation