Skip to main content
Log in

Biomolecular rods and tubes in nanotechnology

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Biomolecules are vitally important elements in nanoscale science and also in future nanotechnology. Their shape and their chemical and physical functionality can give them a big advantage over inorganic and organic substances. While this becomes most obvious in proteins and peptides, with their complicated, but easily controlled chemistry, other biomolecular substances such as DNA, lipids and carbohydrates can also be important. In this review, the emphasis is on one-dimensional molecules and on molecules that self-assemble into linear structures, and on their potential applications. An important aspect is that biomolecules can act as templates, i.e. their shape and chemical properties can be employed to arrange inorganic substances – such as metals or metal compounds – on the nanometre scale. In particular, rod- and tube-like nanostructures can show physical properties that are different from those of the bulk material, and thus these structures are likely to be a basis for new technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7 a
Fig. 8

Similar content being viewed by others

References

  • Akin D, Li H, Bashir R (2004) Real-Time virus trapping and fluorescent imaging in microfluidic devices. Nano Lett 4:257–259

    Article  CAS  Google Scholar 

  • Archibald DD, Mann S (1993) Template mineralization of self-assembled anisotropic lipid microstructures. Nature 364:430–433

    Article  CAS  Google Scholar 

  • Bashir R (2001) DNA-mediated artificial nanobiostructures: state of the art and future directions. Superlattices Microstructures 29:1–16

    Article  CAS  Google Scholar 

  • Bendahmane M, Koo M, Karrer E, Beachy RN (1999) Display of epitopes on the surface of tobacco mosaic virus: impact of charge and isoelectric point of the epitope on virus–host interactions. J Mol Biol 290:9–20

    Article  CAS  PubMed  Google Scholar 

  • Berthon G (ed) (1995) Handbook of metal–ligand interactions in biological fluids. Dekker, New York

  • Boal AK, Headley TJ, Tissot RG, Bunker BC (2004) Microtubule-templated biomimetic mineralization of lepidocrocite. Adv Funct Mater 14:19–24

    Article  CAS  Google Scholar 

  • Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778

    Article  CAS  PubMed  Google Scholar 

  • Cheung CL, Camarero JA, Woods BW, Lin T, Johnson JE, De Yoreo JJ (2004) Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J Am Chem Soc 125:6848–6849

    Article  Google Scholar 

  • Coffer JL, Bigham SR, Li X, Pinizzotto RF, Rho YG, Pirtle RM, Pirtle IL (1996) Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA. Appl Phys Lett 69:3851–3853

    Article  CAS  Google Scholar 

  • Demir M, Stowell MHB (2002) A chemoselective biomolecular template for assembling diverse nanotubular materials. Nanotechnology 13:541–544

    Article  CAS  Google Scholar 

  • Deng Z, Mao C (2003) DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano Lett 3:1545–1548

    Article  CAS  Google Scholar 

  • Ding B, Sha R, Seeman NC (2004) Pseudohexagonal 2D DNA crystals from double crossover cohesion. J Am Chem Soc 126:10230 −10231

    Article  CAS  PubMed  Google Scholar 

  • Djalali R, Chen YF, Matsui H (2002) Au nanowire fabrication from sequenced histidine-rich peptide. J Am Chem Soc 124:13660–13661

    Article  CAS  PubMed  Google Scholar 

  • Dmitriev A, Spillmann H, Lin N, Barth JV, Kern K (2003) Modular assembly of two-dimensional metal-organic coordination networks at a metal surface. Angew Chem Int Ed 42:2670–2673

    Article  CAS  Google Scholar 

  • Douglas T, Young M (1998) Host–guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Article  CAS  Google Scholar 

  • Douglas T, Young M (1999) Virus particles as templates for materials synthesis. Adv Mater 11:679–681

    Article  CAS  Google Scholar 

  • Dragnea B, Chen C, Kwak E-S, Stein B, Kao CC (2003) Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. J Am Chem Soc 125:6374–6375

    Article  CAS  PubMed  Google Scholar 

  • Drexler KE (1981) Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci 78:5275–5278

    CAS  Google Scholar 

  • Dujardin E, Peet C, Stubbs G, Culver JN, Mann S (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3:413–417

    Article  CAS  Google Scholar 

  • Eichen Y, Braun E, Sivan U, Ben-Yoseph G (1998) Self-assembly of nanoelectronic components and circuits using biological templates. Acta Polymer 49:663–670

    Article  CAS  Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom (at Annual meeting 1959, Am. Phys. Soc.). Engineering and Science (Caltech, Pasadena) February 1960

  • Flenniken ML, Willits DA, Brumfield S, Young MJ, Douglas T (2003) The small heat shock protein cage from Methanococcus jannaschii is a versatile nanoscale platform for genetic and chemical modification. Nano Lett 3:1573–1576

    Article  CAS  Google Scholar 

  • Flynn CE, Lee S-W, Peelle BR, Belcher AM (2003) Viruses as vehicles for growth, organization and assembly of materials. Acta Mater 51:5867–5880

    Article  CAS  Google Scholar 

  • Fowler CE, Shenton W, Stubbs G, Mann S (2001) Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles. Adv Mater 13:1266–1269

    Article  CAS  Google Scholar 

  • Fritzsche W, Böhm KJ, Unger E, Köhler JM (1999) Metallic nanowires created by biopolymer masking. Appl Phys Lett 75:2854–2856

    Article  CAS  Google Scholar 

  • Fujikawa S, Kunitake T (2003) Surface fabrication of hollow nanoarchitectures of ultrathin titania layers from assembled latex particles and tobacco mosaic viruses as templates. Langmuir 19:6545–6552

    Article  CAS  Google Scholar 

  • Gabius HJ (2000) Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften 87:108–121

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361

    Article  CAS  Google Scholar 

  • Groot BL de, Grubmüller H (2001) Water permeation across biological membranes. Science 294:2353–2357

    Article  PubMed  Google Scholar 

  • Harnack O, Ford WE, Yasuda A, Wessels JM (2002) Tris(hydroxymethyl)phosphine-capped gold particles templated by DNA as nanowire precursors. Nano Lett 2:919–923

    Article  CAS  Google Scholar 

  • Henrick K, Thornton JM (1998) PQS: a protein quaternary structure file server http://pqs.ebi.ac.uk/pqs-bin/macmol.pl?filename=2tmv. Trends Biochem Sci 23:358–361

    Article  CAS  PubMed  Google Scholar 

  • Islam MN, Zhao XK, Said AA, Mickel SS, Vail CF (1997) High-efficiency and high-resolution fiber-optic probes for near field imaging and spectroscopy. Appl Phys Lett 71:2886–2888

    Article  CAS  Google Scholar 

  • José-Yacamán M, Rendón L, Arenas J, Puche MCS (1996) Maya blue paint: an ancient nanostructured material. Science 273:223–225

    PubMed  Google Scholar 

  • Kasemo B (1998) Biological surface science. Curr Opin Solid State Mater Sci 3:451–459

    Article  CAS  Google Scholar 

  • Kausche GA (1938a) Über den färberischen Nachweis des Tabakmosaikvirus. Naturwissenschaften 26:741–742

    Google Scholar 

  • Kausche GA (1938b) Über eine Trennungsmöglichkeit von Mischviren auf Grund ihrer differenten pH-Stabilität. Naturwissenschaften 26:219–219

    CAS  Google Scholar 

  • Kausche GA (1939) Über die Bildung von hexagonalen Viruskristallen aus Suspensionen des Tabakmosaikvirus in vitro. Naturwissenschaften 27:77–78

    CAS  Google Scholar 

  • Kausche GA (1940) Über den Mechanismus der Goldsolreaktion beim Protein des Tabakmosaik- und Kartoffel-X-Virus. Biol Zbl 60:179–199

    CAS  Google Scholar 

  • Kausche GA, Ruska H (1939) Die Sichtbarmachung der Adsorption von Metallkolloiden an Eiweißkörper. I. Die Reaktion kolloides Gold-Tabakmosaikvirus. Kolloid Z 89:21–26

    CAS  Google Scholar 

  • Kausche GA, Pfankuch E, Ruska H (1939) Die Sichtbarmachung von pflanzlichem Virus im Übermikroskop. Naturwissenschaften 27:292–299

    Google Scholar 

  • Keren K, Krueger M, Gilad R, Ben-Yoseph G, Sivan U, Braun E (2002) Sequence-specific molecular lithography on single DNA molecules. Science 297:72–75

    Article  CAS  PubMed  Google Scholar 

  • Keren K, Berman RS, Buchstab E, Sivan U, Braun E (2003) DNA-templated carbon nanotube field-effect transistor. Science 302:1380–1382

    Article  CAS  PubMed  Google Scholar 

  • Kirsch R, Mertig M, Pompe W, Wahl R, Sadowski G, Böhm KJ, Unger E (1997) Three-dimensional metallization of microtubules. Thin Solid Films 305:248–253

    Article  CAS  Google Scholar 

  • Kis A, Kasas S, Babic B, Kulik AJ, Benoit W, Briggs GAD, Schönenberger C, Catsicas S, Forro L (2002) Nanomechanics of microtubules. Phys Rev Lett 89:2481011–2481014

    Article  Google Scholar 

  • Klug A (1999) The tobacco mosaic virus particle: structure and assembly. Philos Trans R Soc Lond B 354:531–535

    Article  CAS  Google Scholar 

  • Knez M, Sumser M, Bittner AM, Wege C, Jeske H, Kooi S, Burghard M, Kern K (2002) Electrochemical modification of individual nano-objects. J Electroanal Chem 522:70–74

    Article  CAS  Google Scholar 

  • Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maiss E, Kern K (2003) Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Lett 3:1079–1082

    Article  CAS  Google Scholar 

  • Knez M, Sumser M, Bittner AM, Wege C, Jeske H, Martin TP, Kern K (2004a) Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv Funct Mater 14:116–124

    Article  CAS  Google Scholar 

  • Knez M, Sumser MP, Bittner AM, Wege C, Jeske H, Hoffmann DMP, Kuhnke K, Kern K (2004b) Binding the tobacco mosaic virus to inorganic surfaces. Langmuir 20:441–447

    Article  CAS  Google Scholar 

  • Koebnig R, Locher KP, Gelder PV (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37:239–253

    Article  PubMed  Google Scholar 

  • Kühnle A, Linderoth TR, Hammer B, Besenbacher F (2002) Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature 415:891–893

    Article  PubMed  Google Scholar 

  • Kumar A, Pattarkine M, Bhadbhade M, Mandale AB, Ganesh KN, Datar SS, Dharmadhikari CV, Sastry M (2001) Linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates. Adv Mater 13:341–344

    Article  CAS  Google Scholar 

  • Kuznetsov YG, Malkin AJ, Lucas RW, Plomp M, McPherson A (2001) Imaging of viruses by atomic force microscopy. J Gen Virol 82:2025–2034

    CAS  PubMed  Google Scholar 

  • Lee BS, Lee SC, Holliday LS (2003) Biochemistry of mechanoenzymes: biological motors for nanotechnology. Biomed Microdevices 5:269–280

    Article  CAS  Google Scholar 

  • Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, Smith LM (2000) DNA computing on surfaces. Nature 403:175–179

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Stubbs G, Culver JN (1996) Carboxylate interactions involved in the disassembly of tobacco mosaic tobamovirus. Virology 225:11–20

    Google Scholar 

  • Mann S (ed) (1996) Biomimetic materials chemistry. VCH, New York

  • Mann S, Shenton W, Li M, Connolly S, Fitzmaurice D (2000) Biologically programmed nanoparticle assembly. Adv Mater 12:147–150

    Article  CAS  Google Scholar 

  • Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci USA 100:6946–6951

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303:213–217

    Article  CAS  PubMed  Google Scholar 

  • Markowitz M, Baral S, Brandow S, Singh A (1993) Palladium ion assisted formation and metallization of lipid tubules. Thin Solid Films 224:242–247

    Article  Google Scholar 

  • Martin CR, Kohli P (2002) The emerging field of nanotube biotechnology. Nat Rev Drug Discovery 2:29–37

    Article  Google Scholar 

  • Mayes E, Bewick A, Gleeson D, Hoinville J, Jones R, Kasyutich O, Nartowski A, Warne B, Wiggins J, Wong KKW (2003) Biologically derived nanomagnets in self-organized patterned media. IEEE Trans Magn 39:624–627

    Article  CAS  Google Scholar 

  • Medalia O, Heim M, Guckenberger R, Sperling R, Sperling J (1999) Gold-tagged RNA: a probe for macromolecular assemblies. J Struct Biol 127:113–119

    Article  CAS  PubMed  Google Scholar 

  • Meegan JE, Aggeli A, Boden N, Brydson R, Brown AP, Carrick L, Brough AR, Hussain A, Ansell RJ (2004) Designed self-assembled beta-sheet peptide fibrils as templates for silica nanotubes. Adv Funct Mater 14:31–37

    Article  CAS  Google Scholar 

  • Meller A, Nivon L, Branton D (2001) Voltage-driven DNA translocations through a nanopore. Phys Rev Lett 86:3435–3438

    Article  CAS  PubMed  Google Scholar 

  • Mertig M, Wahl R, Lehmann M, Simon P, Pompe W (2001) Formation and manipulation of regular metallic nanoparticle arrays on bacterial surface layers: an advanced TEM study. Eur Phys J D 16:317–320

    Article  CAS  Google Scholar 

  • Mertig M, Ciacchi LC, Seidel R, Pompe W, De Vita A (2002) DNA as selective metallization template. Nano Lett 2:841–844

    Article  CAS  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  • Nakai H, Homma T, Komatsu I, Osaka T (2001) Ab initio molecular orbital study of the oxidation mechanism of hypophosphite ion as a reductant for an electroless deposition process. J Phys Chem B 105:1701–1704

    Article  CAS  Google Scholar 

  • Nakao H, Gad M, Sugiyama S, Otobe K, Ohtani T (2003a) Transfer-printing of highly aligned DNA nanowires. J Am Chem Soc 125:7162–7163

    Article  CAS  PubMed  Google Scholar 

  • Nakao H, Shiigi H, Yamamoto Y, Tokonami S, Nagaoka T, Sugiyama S, Ohtani T (2003b) Highly ordered assemblies of Au nanoparticles organized on DNA. Nano Lett 3:1391–1394

    Article  CAS  Google Scholar 

  • Nam KT, Peelle BR, Lee S-W, Belcher AM (2004) Genetically driven assembly of nanorings based on the M13 virus. Nano Lett 4:23–27

    Article  CAS  Google Scholar 

  • Namba K, Pattanayek R, Stubbs G (1989) Visualization of protein–nucleic acid interactions in a virus: refined structure of intact tobacco mosaic virus at 2.9 Å resolution by X-ray fiber diffraction. J Mol Biol 208:307–325

    CAS  PubMed  Google Scholar 

  • Nedoluzhko A, Douglas T (2001) Ordered association of tobacco mosaic virus in the presence of divalent metal ions. J Inorg Biochem 84:233–240

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  CAS  Google Scholar 

  • Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506

    Article  CAS  PubMed  Google Scholar 

  • Parker L, Kendall A, Stubbs G (2002) Surface features of potato virus X from fiber diffraction. Virology 300:291–295

    Google Scholar 

  • Pattanayek R, Stubbs G (1992) Structure of the U2 strain of tobacco mosaic virus refined at 3.5 Å resolution using X-ray fiber diffraction. J Mol Biol 228:516–528

    Article  CAS  PubMed  Google Scholar 

  • Powell RD, Halsey CMR, Liu W, Joshi VN, Hainfeld JF (1999) Giant platinum clusters: 2-nm covalent metal cluster labels. J Struct Biol 127:177–184

    Article  CAS  PubMed  Google Scholar 

  • Pradhan BK, Kyotani T, Tomita A (1999) Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes. Chem Commun 1317–1318

  • Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627

    Article  CAS  PubMed  Google Scholar 

  • Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, Löhneysen H v (2002) Driving current through single organic molecules. Phys Rev Lett 88:1768041–1768044

    Google Scholar 

  • Reiss BD, Mao C, Solis DJ, Ryan KS, Thomson T, Belcher AM (2004) Biological routes to metal alloy ferromagnetic nanostructures. Nano Lett 4:1127–1132

    Article  CAS  Google Scholar 

  • Renault JP, Bernard A, Bietsch A, Michel B, Bosshard HR, Delamarche E, Kreiter M, Hecht B, Wild UP (2003) Fabricating arrays of single protein molecules on glass using microcontact printing. J Phys Chem B 107:703–711

    Article  CAS  Google Scholar 

  • Rietman EA (2001) Molecular engineering of nanosystems. Springer, Berlin Heidelberg New York

  • Ruben M, Breuning E, Lehn J, Ksenofontov V, Renz F, Gutlich P, Vaughan G (2003) Supramolecular spintronic devices: spin transitions and magnetostructural correlations in [Fe4IIL4]8+ [2×2]-grid-type complexes. Chemistry European Journal 9:4422–4429

    Article  CAS  PubMed  Google Scholar 

  • Rulisek L, Havlas Z (2003) Theoretical studies of metal ion selectivity. 3. A theoretical design of the most specific combinations of functional groups representing amino acid side chains for the selected metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+). J Phys Chem B 107:2376–2385

    Article  CAS  Google Scholar 

  • Ruska H (1943) Versuch zu einer Ordnung der Virusarten. Arch Ges Virusforsch 2:480–498

    Google Scholar 

  • Ruska H (1947) Über die Bindung des Sublimats an Bakterien und Virus. Arch Exp Pathol Pharmakol 204:576–585

    CAS  Google Scholar 

  • Scheibel T, Parthasarathy R, Sawicki G, Lin XM, Jaeger H, Lindquist SL (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci USA 100:4527–4532

    Article  CAS  PubMed  Google Scholar 

  • Schramm G (1943) Über die Spaltung des Tabakmosaikvirus in niedermolekulare Proteine und die Rückbildung hochmolekularen Proteins aus den Spaltstücken. Naturwissenschaften 31:94–96

    CAS  Google Scholar 

  • Schwarz T, Schmidt F, Proll E (1966) Versuche zur tierpathogenen Wirksamkeit des Tabakmosaik-Virus. Naturwissenschaften 53:485–486

    CAS  Google Scholar 

  • Shenton W, Pum D, Sleytr UB, Mann, S (1997) Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389:585–587

    Article  CAS  Google Scholar 

  • Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256

    Article  CAS  Google Scholar 

  • Shimizu T (2002) Bottom-up synthesis and structural properties of self-assembled high-axial-ratio nanostructures. Macromol Rapid Commun 23:311–331

    Article  CAS  Google Scholar 

  • Sleytr UB, Sára M, Pum D, Schuster B (2001) Characterization and use of crystalline bacterial cell surface layers. Prog Surf Sci 68:231–278

    Article  CAS  Google Scholar 

  • Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290:1555–1558

    Article  CAS  PubMed  Google Scholar 

  • Stubbs G (1999) Tobacco mosaic virus particle structure and the initiation of disassembly. Philos Trans R Soc Lond B 354:551–557

    Article  CAS  Google Scholar 

  • Tanaka K, Tengeiji A, Kato T, Toyama N, Shionoya M (2003) A discrete self-assembled metal array in artificial DNA. Science 299:1212–1213

    Article  CAS  PubMed  Google Scholar 

  • Torimoto T, Yamashita M, Kuwabata S, Sakata T, Mori H, Yoneyama H (1999) Fabrication of CdS nanoparticle chains along DNA double strands. J Phys Chem B 103:8799–8803

    Article  CAS  Google Scholar 

  • Van Regenmortel MHV (1999) The antigenicity of tobacco mosaic virus. Philos Trans R Soc Lond B 354:559

    Article  Google Scholar 

  • Wall JS (1999) Visualizing “greengold” clusters in the STEM. J Struct Biol 127:161–168

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Lin T, Tang L, Johnson JE, Finn MG (2002) Icosahedral virus particles as addressable nanoscale building blocks. Angew Chem Int Ed 41:477–480

    Google Scholar 

  • Warner MG, Hutchison JE (2003) Linear assemblies of nanoparticles electrostatically organized on DNA. Nat Mater 2:272–277

    Article  CAS  PubMed  Google Scholar 

  • Wetter C (1975) Tabakmosaikvirus und Para-Tabakmosaikvirus in Zigaretten. Naturwissenschaften 62:533–533

    CAS  PubMed  Google Scholar 

  • Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544

    Article  CAS  PubMed  Google Scholar 

  • Woehrle GH, Warner MG, Hutchison JE (2004) Molecular-level control of feature separation in one-dimensional nanostructure assemblies formed by biomolecular nanolithography. Langmuir 20:5982–5988

    Article  CAS  Google Scholar 

  • Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of coordination and hydration revealed by a K+ channel–Fab complex at 2 Å resolution. Nature 414:43–48

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Mato Knez, Sinan Balcı, Dr. T. Patrick Martin, Prof. Dr. Klaus Kern (MPI für Festkörperforschung, Stuttgart), Martin Sumser, Dirk Leinberger, Fabian Boes, Anan Kadri, Dr. Christina Wege, Prof. Dr. Holger Jeske (Universität Stuttgart), and Prof. Dr. Edgar Maiß (Universität Hannover) for their cooperative efforts in nanoscale science and plant virology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Bittner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bittner, A. Biomolecular rods and tubes in nanotechnology. Naturwissenschaften 92, 51–64 (2005). https://doi.org/10.1007/s00114-004-0579-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-004-0579-8

Keywords

Navigation