Skip to main content

Advertisement

Log in

Bioinformatics Prediction and Analysis of MicroRNAs and Their Targets as Biomarkers for Prostate Cancer: A Preliminary Study

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Prostate cancer (PCa) is the second most common form of cancer in men around the world. Due to its heterogeneity, presentations range from aggressive lethal disease to indolent disease. There is a need to identify core biomarkers that are important for early detection and progression, allowing a more precise method for the treatment and management of Pca. We obtained metastatic prostate cancer associated microRNA array profiles from the GSE28029 dataset in the GEO database. MicroRNA target prediction was done using the databases, TargetScanHuman, miRDB and DIANA microT, six target genes (FOXC1, CDKN1A, BIRC2, CTNND1, ELK1 and LRP8) were found to be common among the three different databases. Differential expression of the target genes was performed via the GENT2 database in the GPL96 platform (HG-U133A). Results indicated all genes were downregulated. Gene Ontology (GO) was used to perform enrichment analysis. The GO enrichment analysis indicated that the downregulated genes were enriched in cellular response to gamma radiation, regulation of transcription and response to drugs as well as protein binding and receptor signaling protein activity. The study suggested that CDKN1A, FOXC1 and BIRC2 might be core genes for prostate cancer that play an important role in its diagnosis, development and progression.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Ferlay, J., Lam, F., Colombet, M., Mery, L., Pineros, M., Znaor, A., Soerjomataram, I., et al. (2019). Global cancer observatory: Cancer today. Lyon: International Agency for Research on Cancer.

    Google Scholar 

  3. Stelcer, E., Konkol, M., Głȩboka, A., & Suchorska, W. M. (2019). Liquid biopsy in oligometastatic prostate cancer-A biologist’s point of view. Frontiers in Oncology, 9, 775. https://doi.org/10.3389/fonc.2019.00775

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barry, M. J. (2001). Clinical practice. Prostate-specific-antigen testing for early diagnosis of prostate cancer. The New England Journal of Medicine, 344(18), 1373–1377. https://doi.org/10.1056/NEJM200105033441806

    Article  CAS  PubMed  Google Scholar 

  5. Määttänen, L., Hakama, M., Tammela, T. L., Ruutu, M., Ala-Opas, M., Juusela, H., Martikainen, P., Stenman, U. H., & Auvinen, A. (2007). Specificity of serum prostate-specific antigen determination in the Finnish prostate cancer screening trial. British Journal of Cancer, 96(1), 56–60. https://doi.org/10.1038/sj.bjc.6603522

    Article  PubMed  PubMed Central  Google Scholar 

  6. Basch, E., Loblaw, D. A., Oliver, T. K., Carducci, M., Chen, R. C., Frame, J. N., et al. (2014). Systemic therapy in men with metastatic castration-resistant prostate cancer: American Society of Clinical Oncology and Cancer Care Ontario clinical practice guideline. Journal of Clinical Oncology, 32(30), 3436–3448. https://doi.org/10.1200/JCO.2013.54.8404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Etzioni, R., Penson, D. F., Legler, J. M., di Tommaso, D., Boer, R., Gann, P. H., & Feuer, E. J. (2002). Overdiagnosis due to prostate-specific antigen screening: Lessons from U.S. prostate cancer incidence trends. Journal of the National Cancer Institute, 94(13), 981–990. https://doi.org/10.1093/jnci/94.13.981

    Article  PubMed  Google Scholar 

  8. Andriole, G. L., Crawford, E. D., Grubb, R. L., Buys, S. S., Chia, D., Church, T. R., et al. (2009). Mortality results from a randomized prostate-cancer screening trial. New England Journal of Medicine, 360(13), 1310–1319.

    CAS  Google Scholar 

  9. Vickers, A. J., Sjoberg, D. D., Ulmert, D., Vertosick, E., Roobol, M. J., Thompson, I., et al. (2014). Empirical estimates of prostate cancer overdiagnosis by age and prostate-specific antigen. BMC Medicine, 12(1), 1–7.

    Google Scholar 

  10. Suzuki, H., Maruyama, R., Yamamoto, E., & Kai, M. (2013). Epigenetic alteration and microRNA dysregulation in cancer. Frontiers in Genetics, 4, 258.

    PubMed  PubMed Central  Google Scholar 

  11. Mizoguchi, A., Takayama, A., Arai, T., Kawauchi, J., & Sudo, H. (2018). MicroRNA-8073: Tumor suppressor and potential therapeutic treatment. PLoS ONE, 13(12), e0209750.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Adams, B. D., Kasinski, A. L., & Slack, F. J. (2014). Aberrant regulation and function of microRNAs in cancer. Current Biology, 24, R762-776.

    CAS  PubMed  Google Scholar 

  13. Ruan, L., Xie, Y., Liu, F., & Chen, X. (2018). Serum miR-1181 and miR-4314 associated with ovarian cancer: MiRNA microarray data analysis for a pilot study. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 222, 31–38.

    CAS  PubMed  Google Scholar 

  14. Yang, H., Wang, L., Tang, X., & Bai, W. (2017). MiR-203a suppresses cell proliferation by targeting E2F transcription factor 3 in human gastric cancer. Oncology Letters, 14(6), 7687–7690.

    PubMed  PubMed Central  Google Scholar 

  15. Chen, Z. H., Zhang, G. L., Li, H. R., Luo, J. D., Li, Z. X., Chen, G. M., et al. (2012). A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate, 72(13), 1443–1452.

    CAS  PubMed  Google Scholar 

  16. Kojima, S., Goto, Y., & Naya, Y. (2017). The roles of microRNAs in the progression of castration-resistant prostate cancer. Journal of Human Genetics, 62, 25–31.

    CAS  PubMed  Google Scholar 

  17. Kanwal, R., Plaga, A. R., Liu, X., Shukla, G. C., & Gupta, S. (2017). MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Letters, 407, 9–20.

    CAS  PubMed  Google Scholar 

  18. Lyu, J., Zhao, L., Wang, F., Ji, J., Cao, Z., Xu, H., et al. (2019). Discovery and validation of serum MicroRNAs as early diagnostic biomarkers for prostate cancer in Chinese population. BioMed Research International. https://doi.org/10.1155/2019/9306803

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., et al. (2013). NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Research, 41(D1), D991.

    CAS  PubMed  Google Scholar 

  20. Agarwal, V., Bell, G. W., Nam, J. W., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4, 2015.

    Google Scholar 

  21. Wong, N., & Wang, X. (2015). miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Research, 43(D1), D146–D152.

    CAS  PubMed  Google Scholar 

  22. Paraskevopoulou, M. D., Georgakilas, G., Kostoulas, N., Vlachos, I. S., Vergoulis, T., Reczko, M., et al. (2013). DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Research, 41, 1.

    Google Scholar 

  23. Park, S. J., Yoon, B. H., Kim, S. K., & Kim, S. Y. (2019). GENT2: An updated gene expression database for normal and tumor tissues. BMC Medical Genomics, 12(Suppl 5), 101–101. https://doi.org/10.1186/s12920-019-0514-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Busk, P. K. (2014). A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics, 15(1), 1–9.

    Google Scholar 

  25. Balcells, I., Cirera, S., & Busk, P. K. (2011). Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnology, 11(1), 1–11.

    Google Scholar 

  26. Jiao, X., Sherman, B. T., Huang, D. W., Stephens, R., Baseler, M. W., Lane, H. C., et al. (2012). DAVID-WS: A stateful web service to facilitate gene/protein list analysis. Bioinformatics, 28(13), 1805–1806.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, Y., Zou, Q., Song, H., Song, F., Wang, L., Zhang, G., et al. (2010). A study of miRNAs targets prediction and experimental validation. Protein & Cell, 1, 979–986.

    CAS  Google Scholar 

  28. Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.

    CAS  Google Scholar 

  29. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2015). STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447–D452.

    CAS  PubMed  Google Scholar 

  30. Watahiki, A., Wang, Y., Morris, J., Dennis, K., O’Dwyer, H. M., Gleave, M., et al. (2011). MicroRNAs associated with metastatic prostate cancer. PLoS ONE, 6(9), 24950.

    Google Scholar 

  31. Grün, D., Wang, Y. L., Langenberger, D., Gunsalus, K. C., & Rajewsky, N. (2005). MicroRNA target predictions across seven drosophilo species and comparison to mammalian targets. PLoS Computational Biology, 1(1), 0051–0066.

    Google Scholar 

  32. Lall, S., Grün, D., Krek, A., Chen, K., Wang, Y. L., Dewey, C. N., et al. (2006). A genome-wide map of conserved MicroRNA targets in C. elegans. Current Biology, 16(5), 460–471.

    CAS  PubMed  Google Scholar 

  33. Gaidatzis, D., van Nimwegen, E., Hausser, J., & Zavolan, M. (2007). Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics, 8, 1–22.

    Google Scholar 

  34. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔct method. Methods, 25(4), 402–408.

    CAS  Google Scholar 

  35. Nelson, W. G., De Marzo, A. M., & DeWeese, T. L. (2001). The molecular pathogenesis of prostate cancer: Implications for prostate cancer prevention. Urology, 57(4), 39–45.

    CAS  PubMed  Google Scholar 

  36. Ambs, S., Prueitt, R. L., Yi, M., Hudson, R. S., Howe, T. M., Petrocca, F., et al. (2008). Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Research, 68(15), 6162–6170.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Leite, K. R. M., Tomiyama, A., Reis, S. T., Sousa-Canavez, J. M., Sañudo, A., Camara-Lopes, L. H., et al. (2013). MicroRNA expression profiles in the progression of prostate cancer-from high-grade prostate intraepithelial neoplasia to metastasis. Urologic Oncology: Seminars and Original Investigations, 31(6), 796–801.

    CAS  PubMed  Google Scholar 

  38. Coleman, W. B. (2018). Molecular pathogenesis of prostate cancer. Molecular pathology: The molecular basis of human disease (pp. 555–568). Amsterdam: Elsevier.

    Google Scholar 

  39. Bradner, J. E., Hnisz, D., & Young, R. A. (2017). Transcriptional addiction in cancer. Cell, 168, 629–643. https://doi.org/10.1016/j.cell.2016.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Y., Shao, C., Shi, C. H., Zhang, L., Yue, H. H., Wang, P. F., et al. (2005). Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism. Asian Journal of Andrology, 7(4), 375–380.

    CAS  PubMed  Google Scholar 

  41. Devreotes, P., & Horwitz, A. R. (2015). Signaling networks that regulate cell migration. Cold Spring Harbor Perspectives in Biology, 7(8), 1.

    Google Scholar 

  42. Sever, R., & Brugge, J. S. (2015). Signal transduction in cancer. Cold Spring Harbor Perspectives in Biology, 5(4), a006098.

    Google Scholar 

  43. Sorrentino, G., Ruggeri, N., Zannini, A., Ingallina, E., Bertolio, R., Marotta, C., et al. (2017). Glucocorticoid receptor signalling activates YAP in breast cancer. Nature Communication, 8, 1–14.

    Google Scholar 

  44. Yu, S., Sun, L., Jiao, Y., & Lee, L. T. O. (2018). The role of G protein-coupled receptor kinases in cancer. International Journal of Biological Sciences., 14, 189–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shah, K., Gagliano, T., Garland, L., O’Hanlon, T., Bortolotti, D., Gentili, V., et al. (2020). Androgen receptor signaling regulates the transcriptome of prostate cancer cells by modulating global alternative splicing. Oncogene, 39(39), 6172–6189. https://doi.org/10.1038/s41388-020-01429-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Corces, M. R., Granja, J. M., Shams, S., Louie, B. H., Seoane, J. A., Zhou, W., et al. (2018). The chromatin accessibility landscape of primary human cancers. Science, 362, 6413.

    Google Scholar 

  47. Chaudhary, K. S., Abel, P. D., & Lalani, E. N. (1999). Role of the Bcl-2 gene family in prostate cancer progression and its implications for therapeutic intervention. Environmental Health Perspectives, 107(Suppl 1), 49.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Renner, W., Langsenlehner, U., Krenn-Pilko, S., Eder, P., & Langsenlehner, T. (2017). BCL2-Genotypen und Überleben bei Prostatakrebs. Strahlentherapie und Onkol, 193(6), 466–471. https://doi.org/10.1007/s00066-017-1126-9

    Article  Google Scholar 

  49. Miller, D. R., Ingersoll, M. A., & Lin, M. F. (2018). ErbB-2 signaling in advanced prostate cancer progression and potential therapy. Endocrine-Related Cancer, 26, R195-209. https://doi.org/10.1530/ERC-19-0009

    Article  Google Scholar 

  50. Edwards, I. J. (2012). Proteoglycans in prostate cancer. Nature Reviews Urology, 9, 196–206.

    CAS  PubMed  Google Scholar 

  51. Suhovskih, A. V., Mostovich, L. A., Kunin, I. S., Boboev, M. M., Nepomnyashchikh, G. I., Aidagulova, S. V., et al. (2013). Proteoglycan expression in normal human prostate tissue and prostate cancer. ISRN Oncology, 2013, 1–9.

    Google Scholar 

  52. Warfel, N. A., & El-Deiry, W. S. (2013). P21WAF1 and tumourigenesis: 20 Years after. Current Opinion in Oncology, 25, 52–58.

    CAS  PubMed  Google Scholar 

  53. Eastham, J. A., Hall, S. J., Sehgal, I., Wang, J., Timme, T. L., Yang, G., Connell-Crowley, L., Elledge, S. J., Zhang, W. W., Harper, J. W., et al. (1995). In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Research, 55(22), 5151–5155.

    CAS  PubMed  Google Scholar 

  54. Li, S., Wang, C., Yu, X., Wu, H., Hu, J., Wang, S., et al. (2017). MiR-3619-5p inhibits prostate cancer cell growth by activating CDKN1A expression. Oncology Reports, 37(1), 241–248.

    PubMed  Google Scholar 

  55. Yang, Z., Jiang, S., Cheng, Y., Li, T., Hu, W., Ma, Z., Chen, F., & Yang, Y. (2017). FOXC1 in cancer development and therapy: Deciphering its emerging and divergent roles. Therapeutic Advances in Medical Oncology, 9(12), 797–816. https://doi.org/10.1177/1758834017742576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Elian, F. A., Yan, E., & Walter, M. A. (2017). FOXC1, the new player in the cancer sandbox. Oncotarget, 9(8), 8165–8178. https://doi.org/10.18632/oncotarget.22742

    Article  PubMed  PubMed Central  Google Scholar 

  57. van der Heul-Nieuwenhuijsen, L., Dits, N. F., & Jenster, G. (2009). Gene expression of forkhead transcription factors in the normal and diseased human prostate. BJU International, 103(11), 1574–1580. https://doi.org/10.1111/j.1464-410X.2009.08351.x

    Article  CAS  PubMed  Google Scholar 

  58. Parajuli, K. R., Zhang, Q., Liu, S., Patel, N. K., Lu, H., Zeng, S. X., et al. (2014). Methoxyacetic acid suppresses prostate cancer cell growth by inducing growth arrest and apoptosis. American Journal of Clinical and Experimental Urology, 2(4), 300–312.

    PubMed  PubMed Central  Google Scholar 

  59. Luk, S. U., Xue, H., Cheng, H., Lin, D., Gout, P. W., Fazli, L., Collins, C. C., Gleave, M. E., & Wang, Y. (2014). The BIRC6 gene as a novel target for therapy of prostate cancer: Dual targeting of inhibitors of apoptosis. Oncotarget, 5(16), 6896–6908. https://doi.org/10.18632/oncotarget.2229

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Biotechnology Department at UWC, the NIC and DST Minetk for their aid in the project.

Funding

Funding for part of this work was provided for by the Nanotechnology Innovation (NIC) Centre with the aid of the Department of Science and Technology (DST) Mintek South Africa.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author conceived the idea, performed the experiments, guided the aim of study, interpreted the project results and drafted the manuscript. The other authors supervised the project and reviewed the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Chipampe Patricia Lombe.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 5 and 6.

Table 5 Primer sequences
Table 6 Cell lines used to investigate the expression levels of the microRNAs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombe, C.P., Meyer, M. & Pretorius, A. Bioinformatics Prediction and Analysis of MicroRNAs and Their Targets as Biomarkers for Prostate Cancer: A Preliminary Study. Mol Biotechnol 64, 401–412 (2022). https://doi.org/10.1007/s12033-021-00414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00414-8

Keywords

Navigation