Skip to main content

Advertisement

Log in

Production of Rabies VLPs in Insect Cells by Two Monocistronic Baculoviruses Approach

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Rabies is an ancient zoonotic disease that still causes the death of over 59,000 people worldwide each year. The rabies lyssavirus encodes five proteins, including the envelope glycoprotein and the matrix protein. RVGP is the only protein exposed on the surface of viral particle, and it can induce immune response with neutralizing antibody formation. RVM has the ability to assist with production process of virus-like particles. VLPs were produced in recombinant baculovirus system. In this work, two recombinant baculoviruses carrying the RVGP and RVM genes were constructed. From the infection and coinfection assays, we standardized the best multiplicity of infection and the best harvest time. Cell supernatants were collected, concentrated, and purified by sucrose gradient. Each step was used for protein detection through immunoassays. Sucrose gradient analysis enabled to verify the separation of VLPs from rBV. Through the negative contrast technique, we visualized structures resembling rabies VLPs produced in insect cells and rBV in the different fractions of the sucrose gradient. Using ELISA to measure total RVGP, the recovery efficiency of VLPs at each stage of the purification process was verified. Thus, these results encourage further studies to confirm whether rabies VLPs are a promising candidate for a veterinary rabies vaccine.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BEVS:

Baculovirus expression vector system

rBVG:

Recombinant baculovirus expressing rabies lyssavirus glycoprotein

rBVM:

Recombinant baculovirus expressing rabies lyssavirus matrix protein

RABV:

Rabies lyssavirus

rBV:

Recombinant baculoviruses

RVGP:

Rabies lyssavirus glycoprotein

RVM:

Rabies lyssavirus matrix protein

VLPs:

Virus-Like Particles

References

  1. Fontana, D., Etcheverrigaray, M., Kratje, R., & Prieto, C. (2016). Development of rabies virus-like particles for vaccine applications: production, characterization, and protection studies. Methods in Molecular Biology, 1403, 155–166. https://doi.org/10.1007/978-1-4939-3387-7_7

    Article  PubMed  Google Scholar 

  2. Fooks, A. R., Cliquet, F., Finke, S., Freuling, C., Hemachudha, T., Mani, R. S., & Banyard, A. C. (2017). Rabies. Nature Reviews Disease Primers, 3, 17091. https://doi.org/10.1038/nrdp.2017.91

    Article  PubMed  Google Scholar 

  3. Hampson, K., Coudeville, L., Lembo, T., Sambo, M., Kieffer, A., Attlan, M., & Prevention, on behalf of the G. A. for R. C. P. for R. (2015). Estimating the global burden of endemic canine rabies. PLOS Neglected Tropical Diseases, 9(4), e0003709. https://doi.org/10.1371/journal.pntd.0003709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. WHO. (2018). WHO Expert Consultation on Rabies (3rd ed., Vols. 1–1, Vol. 1). Geneva: Who Technical Report Serie. Retrieved from http://apps.who.int/iris/bitstream/handle/10665/272364/9789241210218-eng.pdf?ua=1

  5. Kang, H., Qi, Y., Wang, H., Zheng, X., Gao, Y., Li, N., & Xia, X. (2015). Chimeric rabies virus-like particles containing membrane-anchored GM-CSF enhances the immune response against rabies virus. Viruses, 7(3), 1134–1152. https://doi.org/10.3390/v7031134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Albertini, A. A. V., Ruigrok, R. W. H., & Blondel, D. (2011). Chapter 1 - Rabies Virus Transcription and Replication. In A. C. Jackson (Ed.), Advances in Virus Research (1st ed., Vol. 79, pp. 1–22). United States: Academic Press. https://doi.org/10.1016/B978-0-12-387040-7.00001-9

    Chapter  Google Scholar 

  7. Fooks, A. R., Banyard, A. C., Horton, D. L., Johnson, N., McElhinney, L. M., & Jackson, A. C. (2014). Current status of rabies and prospects for elimination. The Lancet, 384(9951), 1389–1399. https://doi.org/10.1016/S0140-6736(13)62707-5

    Article  Google Scholar 

  8. Préhaud, C., Wolff, N., Terrien, E., Lafage, M., Mégret, F., Babault, N., & Lafon, M. (2010). Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Science Signaling, 3(105), 5. https://doi.org/10.1126/scisignal.2000510

    Article  CAS  Google Scholar 

  9. Gomme, E. A., Wanjalla, C. N., Wirblich, C., & Schnell, M. J. (2011). Rabies virus as a research tool and viral vaccine vector. Advances in Virus Research, 79, 139–164. https://doi.org/10.1016/B978-0-12-387040-7.00009-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davis, B. M., Rall, G. F., & Schnell, M. J. (2015). Everything you always wanted to know about rabies virus (but were afraid to ask). Annual Review of Virology, 2(1), 451–471. https://doi.org/10.1146/annurev-virology-100114-055157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu, S., & Guo, C. (2016). Rabies control and treatment: from prophylaxis to strategies with curative potential. Viruses, 8(11), 279. https://doi.org/10.3390/v8110279

    Article  CAS  PubMed Central  Google Scholar 

  12. Briggs, D. J. (2012). The role of vaccination in rabies prevention. Current Opinion in Virology, 2(3), 309–314. https://doi.org/10.1016/j.coviro.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  13. Ertl, H. C. J. (2009). Novel vaccines to human rabies. PLoS Neglected Tropical Diseases, 3(9), e515. https://doi.org/10.1371/journal.pntd.0000515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, D.-K., Kim, H.-H., Lee, K.-W., & Song, J.-Y. (2013). The present and future of rabies vaccine in animals. Clinical and Experimental Vaccine Research, 2(1), 19–25. https://doi.org/10.7774/cevr.2013.2.1.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Velasco-Villa, A., Escobar, L. E., Sanchez, A., Shi, M., Streicker, D. G., Gallardo-Romero, N. F., & Emerson, G. (2017). Successful strategies implemented towards the elimination of canine rabies in the Western Hemisphere. Antiviral Research, 143, 1–12. https://doi.org/10.1016/j.antiviral.2017.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Naskalska, A., & Pyrć, K. (2015). Virus like particles as immunogens and universal nanocarriers. Polish Journal of Microbiology, 64(1), 3–13.

    Article  Google Scholar 

  17. Yan, D., Wei, Y.-Q., Guo, H.-C., & Sun, S.-Q. (2015). The application of virus-like particles as vaccines and biological vehicles. Applied Microbiology and Biotechnology, 99(24), 10415–10432. https://doi.org/10.1007/s00253-015-7000-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chaves, L. C. S., Ribeiro, B. M., & Blissard, G. W. (2018). Production of GP64-free virus-like particles from baculovirus-infected insect cells. Journal of General Virology, 99(2), 265–274. https://doi.org/10.1099/jgv.0.001002

    Article  CAS  Google Scholar 

  19. Fuenmayor, J., Gòdia, F., & Cervera, L. (2017). Production of virus-like particles for vaccines. New Biotechnology, 39, 174–180. https://doi.org/10.1016/j.nbt.2017.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kirchmeier, M., Fluckiger, A.-C., Soare, C., Bozic, J., Ontsouka, B., Ahmed, T., & Anderson, D. E. (2014). Enveloped virus-like particle expression of human cytomegalovirus glycoprotein B antigen induces antibodies with potent and broad neutralizing activity. Clinical and vaccine immunology: CVI, 21(2), 174–180. https://doi.org/10.1128/CVI.00662-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roldão, A., Mellado, M. C. M., Castilho, L. R., Carrondo, M. J., & Alves, P. M. (2010). Virus-like particles in vaccine development. Expert Review of Vaccines, 9(10), 1149–1176. https://doi.org/10.1586/erv.10.115

    Article  PubMed  Google Scholar 

  22. CDC. (2019). Recombinant Influenza (Flu) Vaccine. Retrieved January 22, 2020, from https://www.cdc.gov/flu/prevent/qa_flublok-vaccine.htm

  23. Liu, F., Wu, X., Li, L., Liu, Z., & Wang, Z. (2013). Use of baculovirus expression system for generation of virus-like particles: Successes and challenges. Protein Expression and Purification, 90(2), 104–116. https://doi.org/10.1016/j.pep.2013.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thompson, C. M., Aucoin, M. G., & Kamen, A. A. (2016). Production of Virus-Like Particles for Vaccination. In D. W. Murhammer (Ed.), Baculovirus and Insect Cell Expression Protocols (pp. 299–315). New York, NY: Springer. https://doi.org/10.1007/978-1-4939-3043-2_14

    Chapter  Google Scholar 

  25. Hopkins, R., & Esposito, D. (2009). A rapid method for titrating baculovirus stocks using the Sf-9 easy titeri cell line. BioTechniques, 47(3), 785–788. https://doi.org/10.2144/000113238

    Article  CAS  PubMed  Google Scholar 

  26. Strober, W. (2015). Trypan blue exclusion test of cell viability. Current Protocols in Immunology, 111(1), 31–33. https://doi.org/10.1002/0471142735.ima03bs111

    Article  Google Scholar 

  27. Tordo, N., Poch, O., Ermine, A., Keith, G., & Rougeon, F. (1986). Walking along the rabies genome: Is the large G-L intergenic region a remnant gene? Proceedings of the National Academy of Sciences of the United States of America, 83(11), 3914–3918.

    Article  CAS  Google Scholar 

  28. Lemos, M. A. N., Santos, A. S. D., Astray, R. M., Pereira, C. A., & Jorge, S. A. C. (2009). Rabies virus glycoprotein expression in Drosophila S2 cells. I: design of expression/selection vectors, subpopulations selection and influence of sodium butyrate and culture medium on protein expression. Journal of Biotechnology, 143(2), 103–110. https://doi.org/10.1016/j.jbiotec.2009.07.003

    Article  CAS  PubMed  Google Scholar 

  29. Astray, R. M., Augusto, E., Yokomizo, A. Y., & Pereira, C. A. (2008). Analytical approach for the extraction of recombinant membrane viral glycoprotein from stably transfected Drosophila melanogaster cells. Biotechnology Journal, 3(1), 98–103. https://doi.org/10.1002/biot.200700179

    Article  CAS  PubMed  Google Scholar 

  30. Hicks, D. J., Fooks, A. R., & Johnson, N. (2012). Developments in rabies vaccines. Clinical & Experimental Immunology, 169(3), 199–204. https://doi.org/10.1111/j.1365-2249.2012.04592.x

    Article  CAS  Google Scholar 

  31. van Oers, M. M. (2006). Vaccines for viral and parasitic diseases produced with baculovirus vectors. Advances in Virus Research, 68, 193–253. https://doi.org/10.1016/S0065-3527(06)68006-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Metz, S. W., & Pijlman, G. P. (2011). Arbovirus vaccines; opportunities for the baculovirus-insect cell expression system. Journal of Invertebrate Pathology, 107(Suppl), S16-30. https://doi.org/10.1016/j.jip.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  33. Braun, M., Jandus, C., Maurer, P., Hammann-Haenni, A., Schwarz, K., Bachmann, M. F., & Romero, P. (2012). Virus-like particles induce robust human T-helper cell responses. European Journal of Immunology, 42(2), 330–340. https://doi.org/10.1002/eji.201142064

    Article  CAS  PubMed  Google Scholar 

  34. Fontana, D., Kratje, R., Etcheverrigaray, M., & Prieto, C. (2015). Immunogenic virus-like particles continuously expressed in mammalian cells as a veterinary rabies vaccine candidate. Vaccine, 33(35), 4238–4246. https://doi.org/10.1016/j.vaccine.2015.03.088

    Article  CAS  PubMed  Google Scholar 

  35. Fontana, D., Marsili, F., Garay, E., Battagliotti, J., Etcheverrigaray, M., Kratje, R., & Prieto, C. (2019). A simplified roller bottle platform for the production of a new generation VLPs rabies vaccine for veterinary applications. Comparative Immunology, Microbiology and Infectious Diseases, 65, 70–75. https://doi.org/10.1016/j.cimid.2019.04.009

    Article  PubMed  Google Scholar 

  36. Fabre, M. L., Arrías, P. N., Masson, T., Pidre, M. L., & Romanowski, V. (2020). Baculovirus-derived vectors for immunization and therapeutic applications. Emerging and Reemerging Viral Pathogens. https://doi.org/10.1016/B978-0-12-814966-9.00011-1

    Article  Google Scholar 

  37. Emery, V. C. (1992). Baculovirus expression vectors : choice of expression vector. Methods in Molecular Biology, 8, 287–307. https://doi.org/10.1385/0-89603-191-8:287

    Article  CAS  PubMed  Google Scholar 

  38. Kost, T. A., Condreay, J. P., & Jarvis, D. L. (2005). Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature biotechnology, 23(5), 567–575. https://doi.org/10.1038/nbt1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van Oers, M. M., Pijlman, G. P., & Vlak, J. M. (2015). Thirty years of baculovirus-insect cell protein expression: From dark horse to mainstream technology. The Journal of General Virology, 96(Pt 1), 6–23. https://doi.org/10.1099/vir.0.067108-0

    Article  CAS  PubMed  Google Scholar 

  40. Astray, R. M., Jorge, S. A. C., & Pereira, C. A. (2017). Rabies vaccine development by expression of recombinant viral glycoprotein. Archives of Virology, 162(2), 323–332. https://doi.org/10.1007/s00705-016-3128-9

    Article  CAS  PubMed  Google Scholar 

  41. Prehaud, C., Takehara, K., Flamand, A., & Bishop, D. H. (1989). Immunogenic and protective properties of rabies virus glycoprotein expressed by baculovirus vectors. Virology, 173(2), 390–399.

    Article  CAS  Google Scholar 

  42. Palomares, L. A., & Ramírez, O. T. (2009). Challenges for the production of virus-like particles in insect cells: the case of rotavirus-like particles. Biochemical Engineering Journal, 45(3), 158–167. https://doi.org/10.1016/j.bej.2009.02.006

    Article  CAS  Google Scholar 

  43. Roldão, A., Vieira, H. L. A., Alves, P. M., Oliveira, R., & Carrondo, M. J. T. (2006). Intracellular dynamics in rotavirus-like particles production: Evaluation of multigene and monocistronic infection strategies. Process Biochemistry, 41(10), 2188–2199. https://doi.org/10.1016/j.procbio.2006.06.019

    Article  CAS  Google Scholar 

  44. Kwang, T. W., Zeng, X., & Wang, S. (2016). Manufacturing of AcMNPV baculovirus vectors to enable gene therapy trials. Molecular Therapy. Methods & Clinical Development, 3, 15050. https://doi.org/10.1038/mtm.2015.50

    Article  CAS  Google Scholar 

  45. Ferris, M. M., Stepp, P. C., Ranno, K. A., Mahmoud, W., Ibbitson, E., Jarvis, J., & Rowlen, K. L. (2011). Evaluation of the virus counter® for rapid baculovirus quantitation. Journal of Virological Methods, 171(1), 111–116. https://doi.org/10.1016/j.jviromet.2010.10.010

    Article  CAS  PubMed  Google Scholar 

  46. Licari, P., & Bailey, J. E. (1991). Factors influencing recombinant protein yields in an insect cell-bacuiovirus expression system: Multiplicity of infection and intracellular protein degradation. Biotechnology and Bioengineering, 37(3), 238–246. https://doi.org/10.1002/bit.260370306

    Article  CAS  PubMed  Google Scholar 

  47. Nguyen, B., Jarnagin, K., Williams, S., Chan, H., & Barnett, J. (1993). Fed-batch culture of insect cells: A method to increase the yield of recombinant human nerve growth factor (rhNGF) in the baculovirus expression system. Journal of Biotechnology, 31(2), 205–217.

    Article  CAS  Google Scholar 

  48. Roldão, A., Cox, M., Alves, P., Carrondo, M., & Vicente, T. (2014) Industrial Large Scale of Suspension Culture of Insect Cells. In Industrial Scale Suspension Culture of Living Cells (pp. 348–389). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527683321.ch10

  49. Liu, X., Huang, X., & Yang, X. (2015). Rabies virus-like particles comprised of G and M proteins protect BALB/c mice from lethal dose challenging. Journal of Applied Virology, 4(2), 14–29. https://doi.org/10.21092/jav.v4i2.30

    Article  Google Scholar 

  50. Smith, G. E., Sun, X., Bai, Y., Liu, Y. V., Massare, M. J., Pearce, M. B., & Tumpey, T. M. (2017). Neuraminidase-based recombinant virus-like particles protect against lethal avian influenza A(H5N1) virus infection in ferrets. Virology, 509, 90–97. https://doi.org/10.1016/j.virol.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  51. Maranga, L., Cruz, P. E., Aunins, J. G., & Carrondo, M. J. T. (2002) Production of Core and Virus-Like Particles with Baculovirus Infected Insect Cells. In K. Schügerl, A.-P. Zeng, J. G. Aunins, A. Bader, W. Bell, H. Biebl, A.-P. Zeng (Eds.), Tools and Applications of Biochemical Engineering Science (pp. 183–206). Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-45736-4_9

  52. Contreras-Gómez, A., Sánchez-Mirón, A., García-Camacho, F., Molina-Grima, E., & Chisti, Y. (2014). Protein production using the baculovirus-insect cell expression system. Biotechnology Progress, 30(1), 1–18. https://doi.org/10.1002/btpr.1842

    Article  CAS  PubMed  Google Scholar 

  53. Mebatsion, T., Weiland, F., & Conzelmann, K. K. (1999). Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G. Journal of Virology, 73(1), 242–250.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Ralf F. Hopkins and Dr. Dominic Esposito for providing the Sf9-ET cells used in this study, to Prof. Bergmann Ribeiro and Lorena Chaves for useful discussions.

Funding

This study was financially supported by the National Council of Technological and Scientific Development (CNPq) (grant no. 152538/2012–7), the São Paulo Research Foundation (FAPESP) (grant no. 2009/08038–1), CAPES, and the Butantan Foundation. C.A. Pereira is the recipient of a CNPq 1A senior fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraia Attie Calil Jorge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardino, T.C., Astray, R.M., Pereira, C.A. et al. Production of Rabies VLPs in Insect Cells by Two Monocistronic Baculoviruses Approach. Mol Biotechnol 63, 1068–1080 (2021). https://doi.org/10.1007/s12033-021-00366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00366-z

Keywords

Navigation