Skip to main content
Log in

Preparation of the Enzymatic Hydrolysates from Chlorella vulgaris Protein and Assessment of Their Antioxidant Potential Using Caenorhabditis elegans

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to assess the antioxidant potential of Chlorella vulgaris protein-derived enzymatic hydrolysate using Caenorhabditis elegans. Protein extraction was performed using an alkali solution after complete C. vulgaris swelling and hydrolysis using four commercial proteases (alcalase, neutrase, protamex, and flavourzyme). The results showed that the flavourzyme hydrolysates exhibited the strongest antioxidant activity both in vitro and in vivo. Under the optimum conditions of the enzymatic hydrolysis, the half-maximal effective concentration of the hydrolysates for superoxide and hydroxyl radicals was 0.323 mg/mL and 0.139 mg/mL, respectively. The hydrolysates could significantly extend the lifespan, improve the resistance to methyl viologen-induced oxidative stress, reduce the levels of reactive oxygen species, and enhance the activity of catalase and superoxide dismutase in C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sies, H., & Jones, D. P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology, 21, 363–383.

    Article  CAS  Google Scholar 

  2. Kaludercic, N., & Di Lisa, F. (2020). Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Frontiers in Cardiovascular Medicine, 7, 12.

    Article  CAS  Google Scholar 

  3. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., & Bonaduce, D. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757.

    Article  CAS  Google Scholar 

  4. Ballal, A., Chakravarty, D., Bihani, S. C., & Banerjee, M. (2020). Gazing into the remarkable world of non-heme catalases through the window of the cyanobacterial Mn-catalase ‘KatB.’ Free Radical Biology and Medicine, 160, 480–487.

    Article  CAS  Google Scholar 

  5. Agregán, R., Munekata, P. E., Franco, D., Carballo, J., Barba, F. J., & Lorenzo, J. M. (2018). Antioxidant potential of extracts obtained from macro-(Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata) and micro-algae (Chlorella vulgaris and Spirulina platensis) assisted by ultrasound. Medicines, 5, 33.

    Article  Google Scholar 

  6. Wong, F.-C., Xiao, J., Wang, S., Ee, K.-Y., & Chai, T.-T. (2020). Advances on the antioxidant peptides from edible plant sources. Trends in Food Science & Technology, 99, 44–57.

    Article  CAS  Google Scholar 

  7. Elias, R. J., Kellerby, S. S., & Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition, 48, 430–441.

    Article  CAS  Google Scholar 

  8. Qian, Z.-J., Jung, W.-K., Byun, H.-G., & Kim, S.-K. (2008). Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresource Technology, 99, 3365–3371.

    Article  CAS  Google Scholar 

  9. Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., & Nagappan, T. (2020). Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1, 2–11.

    Article  Google Scholar 

  10. Ko, S.-C., Kim, D., & Jeon, Y.-J. (2012). Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food and Chemical Toxicology, 50, 2294–2302.

    Article  CAS  Google Scholar 

  11. Sheih, I.-C., Wu, T.-K., & Fang, T. J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology, 100, 3419–3425.

    Article  CAS  Google Scholar 

  12. Shuang, W., Gaofan, Z., Xinyue, C., Wenting, Z., Weimin, W., & Yongjun, Z. (2017). Preparation of Chlorella protein and the antioxidant effect of the hydrolyzed peptides. Journal of Chinese Institute of Food Science and Technology, 17, 92–100.

    Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    Article  CAS  Google Scholar 

  14. D’Alessandro, E. B., & Antoniosi Filho, N. R. (2016). Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews, 58, 832–841.

    Article  Google Scholar 

  15. Hildebrand, G., Poojary, M. M., O’Donnell, C., Lund, M. N., Garcia-Vaquero, M., & Tiwari, B. K. (2020). Ultrasound-assisted processing of Chlorella vulgaris for enhanced protein extraction. Journal of Applied Phycology, 32, 1709–1718.

    Article  CAS  Google Scholar 

  16. Xu, S., Zhang, Y., & Jiang, K. (2016). Antioxidant activity in vitro and in vivo of the polysaccharides from different varieties of Auricularia auricula. Food & Function, 7, 3868–3879.

    Article  CAS  Google Scholar 

  17. de Albuquerque Wanderley, M. C., Neto, J. M. W. D., de Andrade, A. F., de Melo, R. G., de Araújo Viana-Marques, D., Bezerra, R. P., & Porto, A. L. F. (2020). First report on Chlorella vulgaris collagenase production and purification by aqueous two-phase system. Sustainable Chemistry and Pharmacy, 15, 100202.

    Article  Google Scholar 

  18. Molino, A., Iovine, A., Casella, P., Mehariya, S., Chianese, S., Cerbone, A., Rimauro, J., & Musmarra, D. (2018). Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. International Journal of Environmental Research and Public Health, 15, 2436.

    Article  CAS  Google Scholar 

  19. Zhang, G. (2015). Research of hypoglycemic activity of antioxidant peptide from Chlorella vulgaris (in Chinese). Master’s thesis, China Jiliang University, China.

  20. Wang, W., Chen, Z., & Yao, H. (2002). Extracting rice protein with different proteases. Cereal & Feed Industry, 2, 41–42.

    CAS  Google Scholar 

  21. Halliwell, B. (1978). Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: Is it a mechanism for hydroxyl radical production in biochemical systems? FEBS Letters, 92, 321–326.

    Article  CAS  Google Scholar 

  22. Zečić, A., & Braeckman, B. P. (2020). DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cells, 9, 109.

    Article  Google Scholar 

  23. Abdul, H. M., Sultana, R., Clair, D. K. S., Markesbery, W. R., & Butterfield, D. A. (2008). Oxidative damage in brain from human mutant APP/PS-1 double knock-in mice as a function of age. Free Radical Biology and Medicine, 45, 1420–1425.

    Article  CAS  Google Scholar 

  24. Srinivas, U. S., Tan, B. W., Vellayappan, B. A., & Jeyasekharan, A. D. (2019). ROS and the DNA damage response in cancer. Redox Biology, 25, 101084.

    Article  CAS  Google Scholar 

  25. Yu, M. (2020). Preparation of proteins from Chlorella vulgaris and the effect on oxidative stress and glucose metabolism (in Chinese). Master’s thesis, China Jiliang University, China.

  26. Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265–278.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science and Technology Program during the Twelfth Five-year Plan Period (No. 2013BAD10B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jiang, W., Hao, X. et al. Preparation of the Enzymatic Hydrolysates from Chlorella vulgaris Protein and Assessment of Their Antioxidant Potential Using Caenorhabditis elegans. Mol Biotechnol 63, 1040–1048 (2021). https://doi.org/10.1007/s12033-021-00361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00361-4

Keywords

Navigation