Skip to main content
Log in

Neutral Serine Protease from Penicillium italicum. Purification, Biochemical Characterization, and Use for Antioxidative Peptide Preparation from Scorpaena notata Muscle

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, purification and properties of an extracellular neutral serine protease from the fungus Penicillium italicum and its potential application as an antioxidant peptides producer are reported. The protease was purified to homogeneity using ammonium sulfate precipitation, Sephacryl S-200 gel filtration, diethylaminoethanol (DEAE)-Sepharose ion exchange chromatography, and TSK-HPLC gel filtration with a 10.2-fold increase in specific activity and 25.8 % recovery. The purified enzyme appeared as single protein band with a molecular mass of 24 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature for the proteolytic activity were pH 7.0 and 50 °C, respectively. The enzyme was stable in the pH range of 6.0–9.0. The protease was activated by divalent cations such as Ca2+ and Mg2+. Complete inhibition of the purified enzyme by phenylmethylsulfonyl fluoride confirmed that the protease was of serine-type. The purified enzyme revealed high stability and relatively broad specificity. Scorpaena notata muscle protein hydrolysates prepared using purified serine protease (protease from P. italicum (Prot-Pen)) showed good in vitro antioxidative activities. The antioxidant activities of Scorpaena muscle protein hydrolyzed by Prot-Pen (SMPH-PP) were evaluated using various antioxidant assays: 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, reducing power, ferrous chelating activity, and DNA nicking assay. SMPH-PP showed varying degrees of antioxidant activity and almost the same strongest protection against hydroxyl radical induced DNA breakage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Prot-Pen:

Protease from Penicillium italicum

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

EDTA:

Disodium ethylenediaminetetraacetate

BHA:

Butylated hydroxyanisole

FPLC:

Fast protein liquid chromatography

SMPH-PP:

Scorpaena muscle protein hydrolyzed by Prot-Pen

SMPH-FL:

Scorpaena muscle protein hydrolyzed by Flavourzyme

SMPH-CH:

Scorpaena muscle protein hydrolyzed by Chymotrypsin

References

  1. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  2. Farnworth, N. E., Robson, G. D., Trinci, A. P. J., & Wiebe, M. G. (2003). Enzyme and Microbial Technology, 33, 85–91.

    Article  CAS  Google Scholar 

  3. Abidi, F., Limam, F., & Marzouki, M. N. (2008). Process Biochemistry, 43, 1202–1208.

    Article  CAS  Google Scholar 

  4. Dekkers, E., Raghavan, S., Kristinsson, H. G., & Marshall, M. R. (2011). Food Chemistry, 124, 640–645.

    Article  CAS  Google Scholar 

  5. Chalamaiah, M., Dinesh, K. B., Hemalatha, R., & Jyothirmayi, T. (2012). Food Chemistry, 135, 3020–3038.

    Article  CAS  Google Scholar 

  6. Liaset, B., Lied, E., & Espe, M. (2000). Journal of the Science of Food and Agriculture, 80, 581–589.

    Article  CAS  Google Scholar 

  7. Guerard, F., Sumaya-Martinez, M. T., Laroque, D., Chabeaud, A., & Dufossé, L. (2007). Process Biochemistry, 42, 1486–1491.

    Article  CAS  Google Scholar 

  8. Pomponi, S. A. (1999). Journal of Biotechnology, 70, 5–13.

    Article  CAS  Google Scholar 

  9. Aneiros, A., & Garateix, A. (2004). Journal of Chromatography B, 803, 41–53.

    Article  CAS  Google Scholar 

  10. Barrow, C., & Shahidi, F. (2008). Marine nutraceuticals and functional foods. USA: CRC 567 Press.

    Google Scholar 

  11. Vercruysse, L., Van-Camp, J., & Smagghie, G. (2005). Journal of Agricultural and Food Chemistry, 53, 8106–8115.

    Article  CAS  Google Scholar 

  12. Kristinsson, H. G., & Rasco, B. A. (2000). Journal of Agricultural and Food Chemistry, 48, 657–666.

    Article  CAS  Google Scholar 

  13. Adler-Nissen, J. (1986). A review of food protein hydrolysis specific areas. In: Enzymic hydrolysis of food proteins. New York: Elsevier Applied Science Publications, pp. 57–131.

  14. Kristinsson, H. G., & Rasco, B. A. (2000). Critical Reviews in Food Science and Nutrition, 40, 43–81.

    Article  CAS  Google Scholar 

  15. Kitts, D. D., & Weiler, K. (2003). Current Pharmaceutical Design, 9, 1309–1323.

    Article  CAS  Google Scholar 

  16. Elias, R. J., Kellerb, S. S., & Decker, E. A. (2008). Critical Reviews in Food Science and Nutrition, 48, 430–441.

    Article  CAS  Google Scholar 

  17. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  18. Segers, R., Butt, T. M., Kerry, B. R., & Peberdy, J. F. (1994). Microbiology, 140, 2715–2723.

    Article  CAS  Google Scholar 

  19. Phillips, P. K., Prior, D., & Awes, B. D. (1984). Journal of Clinical Pathology, 3, 329–331.

    Article  Google Scholar 

  20. Abidi, F., Chobert, J. M., Haertlé, T., & Marzouki, M. N. (2011). Process Biochemistry, 46, 2301–2310.

    Article  CAS  Google Scholar 

  21. Laemmli, U. K. (1970). Nature, 257, 680–685.

    Article  Google Scholar 

  22. Schmidt, T. M., Bleakley, B., & Nealson, K. H. (1988). Applied and Environmental Microbiology, 54, 2793–2797.

    CAS  Google Scholar 

  23. Yen, G., & Wu, J. (1999). Food Chemistry, 65, 375–379.

    Article  CAS  Google Scholar 

  24. Ahmadi, F., Kadivar, M., & Shahedi, M. (2007). Food Chemistry, 105, 57–64.

    Article  CAS  Google Scholar 

  25. Decker, E. A., & Welch, B. (1990). Journal of Agricultural and Food Chemistry, 38, 674–677.

    Article  CAS  Google Scholar 

  26. Ghali, W., Vaudry, D., Jouenne, T., & Marzouki, M. N. (2013). Industrial Crops and Products, 44, 111–118.

    Article  CAS  Google Scholar 

  27. Thibodeau, P. A., Kocsis-Bederd, S., Courteau, J., Niyonsenga, T., & Paquette, B. (2001). Free Radical Biology and Medicin, 30, 62–73.

    Article  CAS  Google Scholar 

  28. Yamamoto, N., Matsumuto, K., Yamagata, Y., Hirano, K., & Ichishima, E. (1993). Phytochemistry, 32, 1393–1397.

    Article  CAS  Google Scholar 

  29. Germano, S., Pandey, A., Osaku, C. A., Rocha, S. N., & Soccol, C. R. (2003). Enzyme and Microbial Technology, 32, 246–251.

    Article  CAS  Google Scholar 

  30. Agrawal, D., Patidar, P., Banerjee, T., & Patil, S. (2004). Process Biochemistry, 39, 977–981.

    Article  CAS  Google Scholar 

  31. Crewther, W. G., & Lennox, F. G. (1950). Preparation of crystals containing protease from Aspergillus oryzae. Nature, 165, 680–684.

    Article  CAS  Google Scholar 

  32. Hajji, M., Kanoun, S., Nasri, M., & Gharsallah, N. (2007). Process Biochemistry, 42, 791–797.

    Article  CAS  Google Scholar 

  33. Nagwa, A., & Tharwat, H. (2006). Biotechnology, 5, 160–165.

    Article  Google Scholar 

  34. Lee, S. K., Kim, J. S., Kim, J. E., Sapkota, K., Shen, M. H., Kim, S., Chun, H. S., Yoo, J. C., Choi, H. S., Kim, M. K., & Kim, S. J. (2005). Protein Expression and Purification, 43, 10–17.

    Article  CAS  Google Scholar 

  35. Wu, B., Wu, L., Chen, D., Yang, Z., & Luo, M. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 451–459.

    Article  Google Scholar 

  36. Norifumi, S., Masao, N., Kazuki, O., Mizuho, K., Yasuhisa, F., & Takao, T. (2012). Mycoscience, 53, 354–364.

    Article  Google Scholar 

  37. Liu, X. L., Du, L. X., Lu, F. P., Zheng, X. Q., & Xiao, J. (2005). Applied Microbiology and Biotechnology, 67, 209–214.

    Article  CAS  Google Scholar 

  38. Sushil, K., Neeru, S. S., Mukh, R. S., & Randhir, S. (2005). Process Biochemistry, 40, 1701–1705.

    Article  Google Scholar 

  39. Shivakumar, S. (2012). Archives of Applied Scientific Research, 4, 188–199.

    CAS  Google Scholar 

  40. Abraham, L. D., & Breuil, C. (1996). Enzyme and Microbial Technology, 18, 133–140.

    Article  CAS  Google Scholar 

  41. Tremacoldi, C. R., Monti, R., Selistre-De-Araujo, H. S., & Carmona, E. C. (2007). World Journal of Microbiology and Biotechnology, 23, 295–299.

    Article  CAS  Google Scholar 

  42. Vieille, C., & Zeikus, J. G. (2001). Microbiology and Molecular Biology Reviews, 65, 1–43.

    Article  CAS  Google Scholar 

  43. Wang, B., Wu, W. P., & Liu, X. Z. (2007). Mycopathologia, 163, 169–176.

    Article  CAS  Google Scholar 

  44. Abidi, F., Aissaoui, N., Gaudin, J.-C., Chobert, J.-M., Haertlé, T., & Marzouki, M. N. (2013). Applied Biochemistry and Biotechnology, 170, 231–247.

    Article  CAS  Google Scholar 

  45. Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Food Chemistry, 118, 559–565.

    Article  CAS  Google Scholar 

  46. Li, Z. Y., Youravong, W., & H-Kittikun, A. (2010). Food Science and Technology, 43, 166–172.

    CAS  Google Scholar 

  47. Memarpoor-Yazdi, M., Mahaki, H., & Zare-Zardini, H. (2013). Journal of Functional Foods, 5, 62–70.

    Article  CAS  Google Scholar 

  48. You, L., Zhao, M., Regenstein, M. J., & Ren, J. (2010). Food Chemistry, 120, 810–816.

    Article  CAS  Google Scholar 

  49. McDonald-Wicks, L. K., Wood, L. G., & Garg, M. L. (2006). Journal of the Science of Food and Agriculture, 86, 2046–2056.

    Article  Google Scholar 

  50. Zhu, K., Zhou, H., & Qian, H. (2006). Process Biochemistry, 41, 1296–1302.

    Article  CAS  Google Scholar 

  51. Ktari, N., Jridi, M., Bkhairia, I., Sayari, N., Ben Salah, R., & Nasri, M. (2012). Food Research International, 49, 747–756.

    Article  CAS  Google Scholar 

  52. Thiansilakul, Y., Benjakul, S., & Shahidi, F. (2007). Journal of Food Biochemistry, 31, 266–287.

    Article  CAS  Google Scholar 

  53. Ben Khaled, H., Ktari, N., Ghorbel-Bellaaj, O., Jridi, M., Lassoued, I., & Nasri, M. (2011). Journal of Food Science and Technology. doi:10.1007/s13197-011-0544-4.

    Google Scholar 

  54. Kumar, M., Kumar, S., & Kaur, S. (2011). Affrican Journal of Pharmacy and Pharmaceutical, 5, 421–427.

    Article  CAS  Google Scholar 

  55. Jung, Y., & Surh, Y. (2001). Free Radical Biology and Medicine, 30, 1407–1417.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the financial project of LIP-MB Laboratory, INSAT, Carthage University, Ministry of Higher Education and Scientific Research of Tunisia. The authors acknowledge the support of Professor Mohamed Rabeh Hajlaoui, Laboratory of Plant Protection, National Institute for Agricultural Research, INRA, Tunisia (Rue Hedi Karray, 2049 Ariana, Tunisia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferid Abidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abidi, F., Aissaoui, N., Chobert, JM. et al. Neutral Serine Protease from Penicillium italicum. Purification, Biochemical Characterization, and Use for Antioxidative Peptide Preparation from Scorpaena notata Muscle. Appl Biochem Biotechnol 174, 186–205 (2014). https://doi.org/10.1007/s12010-014-1052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1052-6

Keywords

Navigation