Skip to main content
Log in

Effects of Gentamicin-Loaded Chitosan-ZnO Nanocomposite on Quorum-Sensing Regulation of Pseudomonas Aeruginosa

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cell density-based intercellular signaling mechanism is known as Quorum sensing (QS); it serves a significant role in regulating the pathogenic factors. The objective of the present study was to assess the influence of chitosan-zinc oxide nanocomposite (CH-ZnO nanocomposite), alone and in combination with gentamicin, on the sensitivity to hydrogen peroxide (H2O2), the production of pathogenic factors and QS-regulated genes of Pseudomonas aeruginosa. The efficacy of the minimum inhibitory concentration (MIC) and 1/4 MIC of the CH-ZnO nanocomposite, alone and in combination with gentamicin, on the sensitivity to H2O2, pyocyanin secretion, swarming and twitching motilities was evaluated. In addition, the expression of some QS-regulated genes including rhlI, rhlR, lasI and lasR genes was measured by Real-time quantitative PCR (RT-qPCR) following exposure to the nanocomposite. The results demonstrated that at MIC concentrations, the gentamicin-loaded CH-ZnO nanocomposite significantly inhibited QS-regulated phenotypes such as pyocyanin secretion (82.4%), swarming (76%) and twitching (73.6%) motilities; further it increased the inhibition growth zone (134.5%), as well as, at 1/4 MIC concentration decreased the expression of lasI (72%), lasR (78%), rhlI (76%) and rhlR (82%) genes; as compared to untreated P. aeruginosa PAO1 (P < 0.05). Our results also demonstrated that the CH-ZnO nanocomposite combined with gentamicin could be a potential innovative candidate, which could be broadly applied in the treatment of P. aeruginosa infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Matta, R., Hallit, S., Hallit, R., Bawab, W., Rogues, A.-M., & Salameh, P. (2018). Epidemiology and microbiological profile comparison between community and hospital acquired infections: a multicenter retrospective study in Lebanon. Journal of Infection and Public Health, 11, 405–411.

    Article  PubMed  Google Scholar 

  2. Tuon, F. F., Gortz, L. W., & Rocha, J. L. (2012). Risk factors for pan-resistant Pseudomonas aeruginosa bacteremia and the adequacy of antibiotic therapy. The Brazilian Journal of Infectious Diseases, 16, 351–356.

    Article  PubMed  Google Scholar 

  3. Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Del. Rev., 65, 1803–1815.

    Article  CAS  Google Scholar 

  4. Hemmati, F., Salehi, R., Ghotaslou, R., Kafil, H. S., Hasani, A., Gholizadeh, P., Nouri, R., & Rezaee, M. A. (2020). Quorum quenching: a potential target for antipseudomonal therapy. Infection and Drug Resistance, 13, 2989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, S., Chen, S., Fan, J., Cao, Z., Ouyang, W., Tong, N., Hu, X., Hu, J., Li, P., & Feng, Z. (2018). Anti-biofilm effect of novel thiazole acid analogs against Pseudomonas aeruginosa through IQS pathways. European Journal of Medicinal Chemistry, 145, 64–73.

    Article  CAS  PubMed  Google Scholar 

  6. Rutherford, S. T., & Bassler, B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspectives in Medicine, 2, 012427.

    Article  CAS  Google Scholar 

  7. Pérez-Pérez, M., Jorge, P., Pérez Rodríguez, G., Pereira, M. O., & Lourenço, A. (2017). Quorum sensing inhibition in Pseudomonas aeruginosa biofilms: new insights through network mining. Biofouling, 33, 128–142.

    Article  PubMed  Google Scholar 

  8. LaSarre, B., & Federle, M. J. (2013). Exploiting quorum sensing to confuse bacterial pathogens. Microbiology and molecular biology reviews, 77, 73–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalia, V. C. (2013). Quorum sensing inhibitors: an overview. Biotechnology Advances, 31, 224–245.

    Article  CAS  PubMed  Google Scholar 

  10. Starkey, M., Lepine, F., Maura, D., Bandyopadhaya, A., Lesic, B., He, J., Kitao, T., Righi, V., Milot, S., & Tzika, A. (2014). Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathogens, 10, 1004321.

    Article  CAS  Google Scholar 

  11. Liu, X., Ma, L., Mao, Z. and Gao, C. (2011) Chitosan-based biomaterials for tissue repair and regeneration, in Chitosan for Biomaterials II, Springer: pp. 81–127.

  12. Ebrahimzadeh, S., Bari, M. R., Hamishehkar, H., Kafil, H. S., & Lim, L. T. (2021). Essential oils-loaded electrospun chitosan-poly (vinyl alcohol) nonwovens laminated on chitosan film as bilayer bioactive edible films. LWT, 144, 111217.

    Article  CAS  Google Scholar 

  13. Aranaz, I., Harris, R., & Heras, A. (2010). Chitosan amphiphilic derivatives. Chemistry and applications. Curr. Org. Chem., 14, 308–330.

    Article  CAS  Google Scholar 

  14. Souza, M. P., Vaz, A. F., Correia, M. T., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2014). Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food and bioprocess technology, 7, 1149–1159.

    Article  CAS  Google Scholar 

  15. Hemmati, F., Rezaee, M. A., Ebrahimzadeh, S., Yousefi, L., Nouri, R., Kafil, H. S., & Gholizadeh, P. (2021). Novel Strategies to Combat Bacterial Biofilms. Mol: Biotechnol. https://doi.org/10.1007/s12033-021-00325-8

    Book  Google Scholar 

  16. Hemmati, F., Salehi, R., Ghotaslou, R., Kafil, H. S., Hasani, A., Gholizadeh, P., & Rezaee, M. A. (2020). The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. International Journal of Biological Macromolecules, 163, 2248–2258.

    Article  CAS  PubMed  Google Scholar 

  17. Ong, S.-Y., Wu, J., Moochhala, S. M., Tan, M.-H., & Lu, J. (2008). Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials, 29, 4323–4332.

    Article  CAS  PubMed  Google Scholar 

  18. Ma, Z., Garrido-Maestu, A., & Jeong, K. C. (2017). Application, mode of action, and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: A review. Carbohydrate Polymers, 176, 257–265.

    Article  CAS  PubMed  Google Scholar 

  19. Qin, X., Kräft, T., & Goycoolea, F. M. (2018). Chitosan encapsulation modulates the effect of trans-cinnamaldehyde on AHL-regulated quorum sensing activity. Colloids and Surfaces. B, Biointerfaces, 169, 453–461.

    Article  CAS  PubMed  Google Scholar 

  20. O’Callaghan, K. A., & Kerry, J. P. (2016). Preparation of low-and medium-molecular weight chitosan nanoparticles and their antimicrobial evaluation against a panel of microorganisms, including cheese-derived cultures. Food Control, 69, 256–261.

    Article  CAS  Google Scholar 

  21. Muslim, S. N., Kadmy, I. M. A., Ali, A. N. M., Salman, B. K., Ahmad, M., Khazaal, S. S., Hussein, N. H., & Muslim, S. N. (2018). Chitosan extracted from Aspergillus flavus shows synergistic effect, eases quorum sensing mediated virulence factors and biofilm against nosocomial pathogen Pseudomonas aeruginosa. International Journal of Biological Macromolecules, 107, 52–58.

    Article  CAS  PubMed  Google Scholar 

  22. Segets, D., Gradl, J., Taylor, R. K., Vassilev, V., & Peukert, W. (2009). Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano, 3, 1703–1710.

    Article  CAS  PubMed  Google Scholar 

  23. Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letter, 90, 213902.

    Article  CAS  Google Scholar 

  24. Vincent, M. G., John, N. P., Narayanan, P., Vani, C., & Murugan, S. (2014). In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. Journal of Applied Pharmaceutical Science, 4, 41.

    CAS  Google Scholar 

  25. Jafarirad, S., Mehrabi, M., Divband, B., & Kosari-Nasab, M. (2016). Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Materials Science and Engineering: C, 59, 296–302.

    Article  CAS  Google Scholar 

  26. Voicu, G., Oprea, O., Vasile, B., & Andronescu, E. (2013). Antibacterial activity of zinc oxide-gentamicin hybrid material. Digest Journal of Nanomaterials & Biostructures (DJNB), 8, 1191–1203.

    Google Scholar 

  27. Al-Tayyar, N. A., Youssef, A. M., & Al-Hindi, R. (2020). Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review. Food Chemistry, 310, 125915.

    Article  CAS  PubMed  Google Scholar 

  28. Vasile, B. S., Oprea, O., Voicu, G., Ficai, A., Andronescu, E., Teodorescu, A., & Holban, A. (2014). Synthesis and characterization of a novel controlled release zinc oxide/gentamicin–chitosan composite with potential applications in wounds care. International Journal of Pharmaceutics, 463, 161–169.

    Article  CAS  PubMed  Google Scholar 

  29. Ebrahimzadeh, S., Ghanbarzadeh, B., & Hamishehkar, H. (2016). Physical properties of carboxymethyl cellulose based nano-biocomposites with Graphene nano-platelets. International Journal of Biological Macromolecules, 84, 16–23.

    Article  CAS  PubMed  Google Scholar 

  30. Bala, A., Kumar, R., & Harjai, K. (2011). Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections. Journal of Medical Microbiology, 60, 300–306.

    Article  CAS  PubMed  Google Scholar 

  31. Rashid, M. H., & Kornberg, A. (2000). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 97, 4885–4890.

    Article  CAS  Google Scholar 

  32. Heidari, A., Haghi, F., Noshiranzadeh, N., & Bikas, R. (2017). (S, E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene) propane hydrazide as a quorum sensing inhibitor of Pseudomonas aeruginosa. Medicinal Chemistry Research, 26, 1947–1955.

    Article  CAS  Google Scholar 

  33. He, X., Hwang, H.-M., Aker, W. G., Wang, P., Lin, Y., Jiang, X., & He, X. (2014). Synergistic combination of marine oligosaccharides and azithromycin against Pseudomonas aeruginosa. Microbiological Research, 169, 759–767.

    Article  CAS  PubMed  Google Scholar 

  34. Movahedi, Z., Pourakbari, B., Mahmoudi, S., Sabouni, F., ASHTIAnI, M. H., Sadeghi, R. H., & Mamishi, S. (2013). Pseudomonas aeruginosa infection among cystic fibrosis and ICU patients in the referral children medical hospital in Tehran. Iran. J. Prev. Med. Hyg., 54, 24.

    CAS  PubMed  Google Scholar 

  35. Hong, D. J., Bae, I. K., Jang, I.-H., Jeong, S. H., Kang, H.-K., & Lee, K. (2015). Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infection & Chemotherapy, 47, 81–97.

    Article  CAS  Google Scholar 

  36. Yang, Y.-X., Xu, Z.-H., Zhang, Y.-Q., Tian, J., Weng, L.-X., & Wang, L.-H. (2012). A new quorum-sensing inhibitor attenuates virulence and decreases antibiotic resistance in Pseudomonas aeruginosa. Journal of Microbiology, 50, 987–993.

    Article  CAS  Google Scholar 

  37. Gholizadeh, P., Maftoon, H., Aghazadeh, M., Asgharzadeh, M., & Kafil, H. S. (2017). Current opinions in the infection control of carbapenem-resistant Enterobacteriaceae species and Pseudomonas aeruginosa. Reviews Medical Microbiology, 28, 97–103.

    Article  Google Scholar 

  38. Darvishi, S., Javanbakht, S., Heydari, A., Kazeminava, F., Gholizadeh, P., Mahdipour, M., & Shaabani, A. (2021). Ultrasound-assisted synthesis of MIL-88(Fe) coordinated to carboxymethyl cellulose fibers: A safe carrier for highly sustained release of tetracycline. International Journal of Biological Macromolecules, 181, 937–944.

    Article  CAS  PubMed  Google Scholar 

  39. El-Mowafy, S. A., Abd El Galil, K. H., El-Messery, S. M., & Shaaban, M. I. (2014). Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa. Microbial Pathogenesis, 74, 25–32.

    Article  CAS  PubMed  Google Scholar 

  40. El-Mowafy, S., Shaaban, M., & Abd El Galil, K. (2014). Sodium ascorbate as a quorum sensing inhibitor of P seudomonas aeruginosa. Journal of Applied Microbiology, 117, 1388–1399.

    Article  CAS  PubMed  Google Scholar 

  41. Horii, T., Morita, M., Muramatsu, H., Muranaka, Y., Kanno, T., & Maekawa, M. (2003). Effects of mupirocin at subinhibitory concentrations on flagella formation in Pseudomonas aeruginosa and Proteus mirabilis. Journal of Antimicrobial Chemotherapy, 51, 1175–1179.

    Article  CAS  Google Scholar 

  42. Bagge, N., Schuster, M., Hentzer, M., Ciofu, O., Givskov, M., Greenberg, E. P., & Høiby, N. (2004). Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrobial Agents and Chemotherapy, 48, 1175–1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kolayli, F., Karadenizli, A., Savli, H., Ergen, K., Hatirnaz, O., Balikci, E., Budak, F., & Vahaboglu, H. (2004). Effect of carbapenems on the transcriptional expression of the oprD, oprM and oprN genes in Pseudomonas aeruginosa. Journal of Medical Microbiology, 53, 915–920.

    Article  CAS  PubMed  Google Scholar 

  44. Fonseca, A., Extremina, C., Fonseca, A., & Sousa, J. (2004). Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. Journal of Medical Microbiology, 53, 903–910.

    Article  CAS  PubMed  Google Scholar 

  45. Wahid, F., Yin, J.-J., Xue, D.-D., Xue, H., Lu, Y.-S., Zhong, C., & Chu, L.-Q. (2016). Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. International Journal of Biological Macromolecules, 88, 273–279.

    Article  CAS  PubMed  Google Scholar 

  46. Karpuraranjith, M., & Thambidurai, S. (2017). Chitosan/zinc oxide-polyvinylpyrrolidone (CS/ZnO-PVP) nanocomposite for better thermal and antibacterial activity. International Journal of Biological Macromolecules, 104, 1753–1761.

    Article  CAS  PubMed  Google Scholar 

  47. Ali, S. G., Ansari, M. A., Jamal, Q. M. S., Almatroudi, A., Alzohairy, M. A., Alomary, M. N., Rehman, S., Mahadevamurthy, M., Jalal, M., & Khan, H. M. (2021). Butea monosperma seed extract mediated biosynthesis of ZnO NPs and their antibacterial, antibiofilm and anti-quorum sensing potentialities. Arabian Journal of Chemistry, 14, 103044.

    Article  CAS  Google Scholar 

  48. Das, M. C., Sandhu, P., Gupta, P., Rudrapaul, P., De, U. C., Tribedi, P., Akhter, Y., & Bhattacharjee, S. (2016). Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: a combinatorial study with azithromycin and gentamicin. Scientific Reports, 6, 1–13.

    Article  CAS  Google Scholar 

  49. Gupta, P., Sarkar, A., Sandhu, P., Daware, A., Das, M., Akhter, Y., & Bhattacharjee, S. (2017). Potentiation of antibiotic against Pseudomonas aeruginosa biofilm: a study with plumbagin and gentamicin. Journal of Applied Microbiology, 123, 246–261.

    Article  CAS  PubMed  Google Scholar 

  50. Vinckx, T., Wei, Q., Matthijs, S., & Cornelis, P. (2010). The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. Microbiology, 156, 678–686.

    Article  CAS  PubMed  Google Scholar 

  51. Sui, S. J. H., Fedynak, A., Hsiao, W. W., Langille, M. G., & Brinkman, F. S. (2009). The association of virulence factors with genomic islands. PLoS ONE, 4, 8094.

    Article  CAS  Google Scholar 

  52. Heidari, A., Noshiranzadeh, N., Haghi, F., & Bikas, R. (2017). Inhibition of quorum sensing related virulence factors of Pseudomonas aeruginosa by pyridoxal lactohydrazone. Microbial Pathogenesis, 112, 103–110.

    Article  CAS  PubMed  Google Scholar 

  53. Shen, L., Shi, Y., Zhang, D., Wei, J., Surette, M. G., & Duan, K. (2008). Modulation of secreted virulence factor genes by subinhibitory concentrations of antibiotics in Pseudomonas aeruginosa. The Journal of Microbiology, 46, 441–447.

    Article  CAS  PubMed  Google Scholar 

  54. Vadekeetil, A., Alexandar, V., Chhibber, S., & Harjai, K. (2016). Adjuvant effect of cranberry proanthocyanidin active fraction on antivirulent property of ciprofloxacin against Pseudomonas aeruginosa. Microbial Pathogenesis, 90, 98–103.

    Article  CAS  PubMed  Google Scholar 

  55. Chanda, S., & Rakholiya, K. (2011). Combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases. Microbiol Book Series, 1, 520–529.

    Google Scholar 

  56. Hassett, D. J., Ma, J. F., Elkins, J. G., McDermott, T. R., Ochsner, U. A., West, S. E., Huang, C. T., Fredericks, J., Burnett, S., & Stewart, P. S. (1999). Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Molecular Microbiology, 34, 1082–1093.

    Article  CAS  PubMed  Google Scholar 

  57. Vadekeetil, A., Chhibber, S., & Harjai, K. (2019). Efficacy of intravesical targeting of novel quorum sensing inhibitor nanoparticles against Pseudomonas aeruginosa biofilm-associated murine pyelonephritis. Journal of Drug Targeting, 27, 995–1003.

    Article  CAS  PubMed  Google Scholar 

  58. Badawy, M. S. E., Riad, O. K. M., Taher, F., & Zaki, S. A. (2020). Chitosan and chitosan-zinc oxide nanocomposite inhibit expression of LasI and RhlI genes and quorum sensing dependent virulence factors of Pseudomonas aeruginosa. International Journal of Biological Macromolecules, 149, 1109–1117.

    Article  CAS  PubMed  Google Scholar 

  59. Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339, 2693–2700.

    Article  CAS  PubMed  Google Scholar 

  60. Lee, J.-H., Kim, Y.-G., Cho, M. H., & Lee, J. (2014). ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiological Research, 169, 888–896.

    Article  CAS  PubMed  Google Scholar 

  61. García-Lara, B., Saucedo-Mora, M., Roldán-Sánchez, J., Pérez-Eretza, B., Ramasamy, M., Lee, J., Coria-Jimenez, R., Tapia, M., Varela-Guerrero, V., & García-Contreras, R. (2015). Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental P seudomonas aeruginosa strains by ZnO nanoparticles. Letters in Applied Microbiology, 61, 299–305.

    Article  PubMed  CAS  Google Scholar 

  62. Saleh, M. M., Refa’tLatif, A. S. H. K. A., Abbas, H. A., & Askoura, M. (2019). Zinc oxide nanoparticles inhibits quorum sensing and virulence in Pseudomonas aeruginosa. African Health Sciences, 19, 2043–2055.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dieppois, G., Ducret, V., Caille, O., & Perron, K. (2012). The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa. PLoS ONE, 7, 38148.

    Article  CAS  Google Scholar 

  64. Divya, K., Vijayan, S., George, T. K., & Jisha, M. (2017). Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fibers and Polymers, 18, 221–230.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (Grant No. 97/60073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ahangarzadeh Rezaee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmati, F., Ghotaslou, R., Salehi, R. et al. Effects of Gentamicin-Loaded Chitosan-ZnO Nanocomposite on Quorum-Sensing Regulation of Pseudomonas Aeruginosa. Mol Biotechnol 63, 746–756 (2021). https://doi.org/10.1007/s12033-021-00336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00336-5

Keywords

Navigation