Skip to main content

Advertisement

Log in

Development of a PCR Lateral Flow Assay for Rapid Detection of Bacillus anthracis, the Causative Agent of Anthrax

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus anthracis, the causative agent of anthrax is one of the most potent listed biological warfare agents. The conventional microbiological methods of its detection are labor intensive and time consuming, whereas molecular assays are fast, sensitive and specific. PCR is one of the most reliable diagnostic tools in molecular biology. The combination of PCR with lateral flow strips can reduce the diagnostic/detection time. It gives an alternative to gel electrophoresis and offers easy and clear interpretation of results. In the present study, a PCR Lateral flow (PCR-LF) assay targeting cya gene present on pXO1 plasmid of B. anthracis has been developed. The forward and reverse primers were tagged with 6-carboxyflourescein (6-FAM) and biotin, respectively, at 5′ end. The dual labeled PCR products were detected using lateral flow (LF) strips developed in this study. The PCR-LF assay could detect ≥ 5 pg of genomic DNA and ≥ 500 copies of target DNA harboured in a recombinant plasmid. The assay was able to detect as few as 103 and 10 CFU/mL of B. anthracis Sterne cells spiked in human blood after 6 and 24 h of enrichment, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spencer, R. C. (2003). Bacillus anthracis. Journal of Clinical Pathology, 56, 182–187

    Article  CAS  Google Scholar 

  2. Goel, A. K. (2015). Anthrax: A disease of biowarfare and public health importance. World Journal of Clinical Cases, 3, 20–33

    Article  Google Scholar 

  3. Collier, R. J., & Young, J. A. (2003). Anthrax toxin. Annual Review of Cell and Developmental Biology, 19, 45–70

    Article  CAS  Google Scholar 

  4. Turnbull, P. C. (1999). Definitive identification of Bacillus anthracis—A review. Journal of Applied Microbiology, 87, 237–240

    Article  CAS  Google Scholar 

  5. Welkos, S. L., Keener, T. J., & Gibbs, P. H. (1986). Differences in susceptibility of inbred mice to Bacillus anthracis. Infection and Immunity, 51, 795–800

    Article  CAS  Google Scholar 

  6. Blažková, M., Koets, M., Rauch, P., & van Amerongen, A. (2009). Development of a nucleic acid lateral flow immunoassay for simultaneous detection of Listeria spp. and Listeria monocytogenes in food. European Food Research and Technology, 229, 867

    Article  Google Scholar 

  7. Zhuang, L., Ji, Y., Tian, P., Wang, K., Kou, C., Gu, N., & Zhang, Y. (2019). Polymerase chain reaction combined with fluorescent lateral flow immunoassay based on magnetic purification for rapid detection of canine parvovirus 2. BMC Veterinary Research, 15, 30

    Article  Google Scholar 

  8. Takada, K., Sakaguchi, Y., Oka, C., & Hirasawa, M. (2005). New rapid polymerase chain reaction-immunochromatographic assay for Porphyromonas gingivalis. Journal of Periodontology, 76, 508–512

    Article  CAS  Google Scholar 

  9. Fayad, N., Kallassy Awad, M., & Mahillon, J. (2019). Diversity of Bacillus cereus sensu lato mobilome. BMC Genomics, 20, 436

    Article  Google Scholar 

  10. Marston, C. K., Gee, J. E., Popovic, T., & Hoffmaster, A. R. (2006). Molecular approaches to identify and differentiate Bacillus anthracis from phenotypically similar Bacillus species isolates. BMC Microbiology, 6, 22

    Article  Google Scholar 

  11. Helgason, E., Okstad, O. A., Caugant, D. A., Johansen, H. A., Fouet, A., Mock, M., Hegna, I., & Kolsto, A. B. (2000). Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis-one species on the basis of genetic evidence. Applied and Environment Microbiology, 66, 2627–2630

    Article  CAS  Google Scholar 

  12. Ghosh, N., Tomar, I., & Goel, A. K. (2013). A field usable qualitative anti-protective antigen enzyme-linked immunosorbent assay for serodiagnosis of human anthrax. Microbiology and Immunology, 57, 145–149

    Article  CAS  Google Scholar 

  13. Ghosh, N., & Goel, A. K. (2012). Anti-protective antigen IgG enzyme-linked immunosorbent assay for diagnosis of cutaneous anthrax in India. Clinical and Vaccine Immunology, 19, 1238–1242

    Article  CAS  Google Scholar 

  14. Varshney, A., Puranik, N., Kumar, M., Pal, V., Padmaja, J., & Goel, A. K. (2019). An ELISA using a recombinant chimera of protective antigen and lethal factor for serodiagnosis of cutaneous anthrax in India. Biologicals, 57, 55–60

    Article  CAS  Google Scholar 

  15. Puranik, N., Kumar, M., Tripathi, N., Pal, V., & Goel, A. K. (2019). A rapid flow through membrane enzyme linked immunosorbent assay for Bacillus anthracis using surface array protein as a biomarker. Defence Science Journal, 69, 348–352

    Article  CAS  Google Scholar 

  16. Koczula, K. M., & Gallotta, A. (2016). Lateral flow assays. Essays in Biochemistry, 60, 111–120

    Article  Google Scholar 

  17. Puranik, N., Pal, V., Tripathi, N. K., & Goel, A. K. (2020). Development of a rapid immunochromatographic assay for detection of surface array protein (Sap), a potent biomarker of Bacillus anthracis. Biologia, 75, 613–617

    Article  CAS  Google Scholar 

  18. Gates-Hollingsworth, M. A., Perry, M. R., Chen, H., Needham, J., Houghton, R. L., Raychaudhuri, S., Hubbard, M. A., & Kozel, T. R. (2015). Immunoassay for capsular antigen of Bacillus anthracis enables rapid diagnosis in a rabbit model of inhalational anthrax. PLoS ONE, 10, e0126304

    Article  Google Scholar 

  19. Buscher, P. (2011). Nucleic acid lateral flow tests for molecular diagnosis: An update. Expert Opinion on Medical Diagnostics, 5, 85–89

    Article  Google Scholar 

  20. Zhang, P., Liu, X., Wang, C., Zhao, Y., Hua, F., Li, C., Yang, R., & Zhou, L. (2014). Evaluation of up-converting phosphor technology-based lateral flow strips for rapid detection of Bacillus anthracis spore, Brucella spp., and Yersinia pestis. PLoS ONE, 9, e105305

    Article  Google Scholar 

  21. Baeumner, A. J., Leonard, B., McElwee, J., & Montagna, R. A. (2004). A rapid biosensor for viable B. anthracis spores. Analytical and Bioanalytical Chemistry, 380, 15–23

    Article  CAS  Google Scholar 

  22. Leppla, S. H. (1982). Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proceedings of National Academy of Sciences USA, 79, 3162–3166

    Article  CAS  Google Scholar 

  23. Pena-Gonzalez, A., Rodriguez, R. L., Marston, C. K., Gee, J. E., Gulvik, C. A., Kolton, C. B., Saile, E., Frace, M., Hoffmaster, A. R., & Konstantinidis, K. T. (2018). Genomic characterization and copy number variation of Bacillus anthracis plasmids pXO1 and pXO2 in a historical collection of 412 strains. mSystems. https://doi.org/10.1128/mSystems.00065-18

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liang, X., Zhang, H., Zhang, E., Wei, J., Li, W., Wang, B., Dong, S., & Zhu, J. (2016). Identification of the pXO1 plasmid in attenuated Bacillus anthracis vaccine strains. Virulence, 7, 578–586

    Article  CAS  Google Scholar 

  25. Schade, R., Calzado, E. G., Sarmiento, R., Chacana, P. A., Porankiewicz-Asplund, J., & Terzolo, H. R. (2005). Chicken egg yolk antibodies (IgY-technology): A review of progress in production and use in research and human and veterinary medicine. Alternatives to Laboratory Animals, 33, 129–154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, DRDE, Gwalior for providing necessary facilities for this study (Acc No HR-2020-81). SB is thankful to Department of Biotechnology (DBT), Ministry of Science & Technology, Government of India for providing Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Goel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All the animal experiments were performed according to the Institutional Animal Ethics Committee (IAEC) vide registration number 37/1999/CPCSEA. The study was also approved by Institutional Biosafety Committee of Defence Research and Development Establishment, DRDO, Ministry of Defence, Government of India wide protocol no: BPT-02/58/AKG.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banger, S., Pal, V., Tripathi, N.K. et al. Development of a PCR Lateral Flow Assay for Rapid Detection of Bacillus anthracis, the Causative Agent of Anthrax. Mol Biotechnol 63, 702–709 (2021). https://doi.org/10.1007/s12033-021-00335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00335-6

Keywords

Navigation