Skip to main content
Log in

A rapid biosensor for viable B. anthracis spores

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple membrane-strip-based biosensor assay has been combined with a nucleic acid sequence-based amplification (NASBA) reaction for rapid (4 h) detection of a small number (ten) of viable B. anthracis spores. The biosensor is based on identification of a unique mRNA sequence from one of the anthrax toxin genes, the protective antigen (pag), encoded on the toxin plasmid, pXO1, and thus provides high specificity toward B. anthracis. Previously, the anthrax toxins activator (atxA) mRNA had been used in our laboratory for the development of a biosensor for the detection of a single B. anthracis spore within 12 h. Changing the target sequence to the pag mRNA provided the ability to shorten the overall assay time significantly. The vaccine strain of B. anthracis (Sterne strain) was used in all experiments. A 500-μL sample containing as few as ten spores was mixed with 500 μL growth medium and incubated for 30 min for spore germination and mRNA production. Thus, only spores that are viable were detected. Subsequently, RNA was extracted from lysed cells, selectively amplified using NASBA, and rapidly identified by the biosensor. While the biosensor assay requires only 15 min assay time, the overall process takes 4 h for detection of ten viable B. anthracis spores, and is shortened significantly if more spores are present. The biosensor is based on an oligonucleotide sandwich-hybridization assay format. It uses a membrane flow-through system with an immobilized DNA probe that hybridizes with the target sequence. Signal amplification is provided when the target sequence hybridizes to a second DNA probe that has been coupled to liposomes encapsulating the dye sulforhodamine B. The amount of liposomes captured in the detection zone can be read visually or quantified with a hand-held reflectometer. The biosensor can detect as little as 1 fmol target mRNA (1 nmol L−1). Specificity analysis revealed no cross-reactivity with 11 organisms tested, among them closely related species such as B. cereus, B. megaterium, B. subtilis, B. thuringiensis, Lactococcus lactis, Lactobacillus plantarum, and Chlostridium butyricum. Also, no false positive signals were obtained from nonviable spores. We suggest that this inexpensive biosensor is a viable option for rapid, on-site analysis providing highly specific data on the presence of viable B. anthracis spores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arakawa ET, Lavrik NV, Datskos PG (2003) Appl Opt 42(10):1757–1762

    PubMed  Google Scholar 

  2. Baeumner AJ, Schlesinger N, Slutzki N, Romano J, Lee E, Montagna R (2002) Anal Chem 74(6):1442–1448

    Article  CAS  PubMed  Google Scholar 

  3. Baeumner AJ, Cohen R, Miksic V, Min J (2003) Biosens Bioelectron 8(4):405–419

    Article  Google Scholar 

  4. Belgrader P, Hansford D, Kovacs GT, Venkateswaran K, Mariella R Jr, Milanovich F, Nasarabadi S, Okuzumi M, Pourahmadi F, Northrup MA (1999) Anal Chem 71(19):4232–4236

    Article  CAS  PubMed  Google Scholar 

  5. Bell CA, Uhl JR, Hadfield TL, David JC, Meyer RF, Smith TF, Cockerill FR III (2002) J Clin Microbiol 40(8):2897–2902

    Article  CAS  PubMed  Google Scholar 

  6. Beyer W, Glockner P, Otto J, Bohm R (1995) Microbiol Res 150(2):179–186

    CAS  PubMed  Google Scholar 

  7. Boom R, Sol C, Salimans M, Jansen C, Wertheim van Dillen P (1990) J Clin Microbiol 28:495–503

    CAS  PubMed  Google Scholar 

  8. Bruno JG, Kiel JL (1999) Biosens Bioelectron 14(5):457–464

    Article  CAS  PubMed  Google Scholar 

  9. Carl M, Hawkins R, Coulson N, Lowe J, Robertson DL, Nelson WM, Titball RW, Woody JN (1992) J Infect Dis 165(6):1145–1148

    CAS  PubMed  Google Scholar 

  10. Cheun HI, Makino SI, Watarai M, Shirahata T, Uchida I, Takeshi K (2001) J Appl Microbiol 91(3):421–426

    Article  CAS  PubMed  Google Scholar 

  11. Coker PR, Smith KL, Fellows PF, Rybachuck G, Kousoulas KG, Hugh-Jones ME (2003) J Clin Microbiol 41(3):1212–1218

    Article  CAS  PubMed  Google Scholar 

  12. Dang JL, Heroux K, Kearney J, Arasteh A, Gostomski M, Emanuel PA (2001) Appl Environ Microbiol 67(8):3665–3670

    Article  CAS  PubMed  Google Scholar 

  13. Dragon DC, Rennie RP (2001) Lett Appl Microbiol 33(2):100–105

    Article  CAS  PubMed  Google Scholar 

  14. Elhanany E, Barak R, Fisher M, Kobiler D, Altboum Z (2001) Rapid Commun Mass Spectrom 15(22):2110–2116

    Article  CAS  PubMed  Google Scholar 

  15. Hanna P (1999) J Appl Microbiol 87:285–287

    Article  CAS  PubMed  Google Scholar 

  16. Hartley HA, Baeumner AJ (2003) Anal Bioanal Chem 376(3):319–327

    CAS  PubMed  Google Scholar 

  17. Henderson I, Duggleby C, Turnbull P (1994) Int J Syst Bacteriol 44:99–105

    CAS  PubMed  Google Scholar 

  18. Hutson RA, Duggleby CJ, Lowe JR, Manchee RJ, Turnbull PC (1993) J Appl Bacteriol 75(5):463–472

    CAS  PubMed  Google Scholar 

  19. Iacono-Connors LC, Novak J, Rossi C, Mangiafico J, Ksiazek T (1994) Clin Diagn Lab Immunol 1(1):78–82

    CAS  PubMed  Google Scholar 

  20. Inglesby T, Henderson D, Bartlett J, Ascher M, Eitzen E, Friedlander A, Hauer J, McDade J, Osterholm M, O’Toole T, Parker G, Perl T, Russell P, Tonat K (1999) JAMA 281(18):1735–1745

    Article  CAS  PubMed  Google Scholar 

  21. Jones MB, Blaser MJ (2003) Infect Immun 71(7):3914–3919

    Article  CAS  PubMed  Google Scholar 

  22. Ko KS, Kim JM, Kim JW, Jung BY, Kim W, Kim IJ, Kook YH (2003) J Clin Microbiol 41(7):2908–2914

    Article  CAS  PubMed  Google Scholar 

  23. Lai EM, Phadke ND, Kachman MT, Giorno R, Vazquez S, Vazquez JA, Maddock JR, Driks A (2003) J Bacteriol 185(4):1443–1454

    Article  CAS  PubMed  Google Scholar 

  24. Levi K, Higham JL, Coates D, Hamlyn PF (2003) Lett Appl Microbiol 36(6):418–422

    Article  CAS  PubMed  Google Scholar 

  25. Levine SM, Perez-Perez G, Olivares A, Yee H, Hanna BA, Blaser MJ (2002) J Clin Microbiol 40(11):4360–4362

    Article  CAS  PubMed  Google Scholar 

  26. Liang X, Yu D (1999) J Applied Microbiol 87:200–203

    Article  CAS  Google Scholar 

  27. Long GW, O’Brien T (1999) J Appl Microbiol 87(2):214

    Article  PubMed  Google Scholar 

  28. Luna VA, King D, Davis C, Rycerz T, Ewert M, Cannons A, Amuso P, Cattani J (2003) J Clin Microbiol 41(3):1252–1255

    Article  PubMed  Google Scholar 

  29. Makino SI, Iinuma-Okada Y, Maruyama T, Ezaki T, Sasakawa C, Yoshikawa M (1993) J Clin Microbiol 31(3):547–551

    CAS  PubMed  Google Scholar 

  30. Makino SI, Cheun HI, Watarai M, Uchida I, Takeshi K (2001) Lett Appl Microbiol 33(3):237–240

    Article  CAS  PubMed  Google Scholar 

  31. Makino S, Cheun HI (2003) J Microbiol Methods 53(2):141–147

    Article  CAS  PubMed  Google Scholar 

  32. McDonald R, Cao T, Borschel R (2001) Mil Med 166(3):237–239

    CAS  PubMed  Google Scholar 

  33. Patra G, Sylvestre P, Ramisse V, Therasse J, Guesdon J (1996) FEMS Immunol Med Microbiol 15(4):223–231

    Article  CAS  PubMed  Google Scholar 

  34. Patra G, Vaissaire J, Weber-Levy M, Le Doujet C, Mock M (1998) J Clin Microbiol 36(11):3412–3414

    CAS  PubMed  Google Scholar 

  35. Qi Y, Patra G, Liang X, Williams LE, Rose S, Redkar RJ, DelVecchio VG (2001) Appl Environ Microbiol 67(8):3720–3727

    Article  CAS  PubMed  Google Scholar 

  36. Quinn CP, Semenova VA, Elie CM, Romero-Steiner S, Greene C, Li H, Stamey K, Steward-Clark E, Schmidt DS, Mothershed E, Pruckler J, Schwartz S, Benson RF, Helsel LO, Holder PF, Johnson SE, Kellum M, Messmer T, Thacker WL, Besser L, Plikaytis BD, Taylor TH Jr, Freeman AE, Wallace KJ, Dull P, Sejvar J, Bruce E, Moreno R, Schuchat A, Lingappa JR, Martin SK, Walls J, Bronsdon M, Carlone GM, Bajani-Ari M, Ashford DA, Stephens DS, Perkins BA (2002) Emerg Infect Dis 8(10):1103–1110

    CAS  PubMed  Google Scholar 

  37. Radnedge L, Agron PG, Hill KK, Jackson PJ, Ticknor LO, Keim P, Andersen GL (2003) Appl Environ Microbiol 69(5):2755–2764

    Article  CAS  PubMed  Google Scholar 

  38. Ramisse V, Patra G, Garrigue H, Guesdon JL, Mock M (1996) FEMS Microbiol Lett 145(1):9–16

    Article  CAS  PubMed  Google Scholar 

  39. Ramisse V, Patra G, Vaissaire J, Mock M (1999) J Appl Microbiol 87(2):224–228

    Article  CAS  PubMed  Google Scholar 

  40. Stopa PJ (2000) Cytometry 41(4):237–244

    CAS  PubMed  Google Scholar 

  41. Stratis-Cullum DN, Griffin GD, Mobley J, Vass AA, Vo-Dinh T (2003) Anal Chem 75(2):275–280

    Article  CAS  PubMed  Google Scholar 

  42. Turnbough CL Jr (2003) J Microbiol Methods 53(2):263–271

    Article  CAS  PubMed  Google Scholar 

  43. Turnbull P (1991) Vaccine 9:533–539

    Article  CAS  PubMed  Google Scholar 

  44. Turnbull P (1999) J Appl Microbiol 87:237–240

    Article  CAS  PubMed  Google Scholar 

  45. Uhl JR, Bell CA, Sloan LM, Espy MJ, Smith TF, Rosenblatt JE, Cockerill FR (2002) Mayo Clin Proc 77(7):673–680

    CAS  PubMed  Google Scholar 

  46. Wilson WJ, Strout CL, DeSantis TZ, Stilwell JL, Carrano AV, Andersen GL (2002) Mol Cell Probes 16(2):119–127

    Article  CAS  PubMed  Google Scholar 

  47. Zahavy E, Fisher M, Bromberg A, Olshevsky U (2003) Appl Environ Microbiol 69(4):2330–2339

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge Innovative Biotechnologies International, Inc., Grand Island, NY, USA for providing financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje J. Baeumner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeumner, A.J., Leonard, B., McElwee, J. et al. A rapid biosensor for viable B. anthracis spores. Anal Bioanal Chem 380, 15–23 (2004). https://doi.org/10.1007/s00216-004-2726-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2726-7

Keywords

Navigation