Skip to main content

Advertisement

Log in

Recent Advances in Nano-Bio-Sensing Fabrication Technology for the Detection of Oral Cancer

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Nanotechnology-based miniaturized devices have been a breakthrough in the pre-clinical and clinical research areas, e.g. drug delivery, personalized medicine. They have revolutionized the discovery and development of biomarker-based diagnostic devices for detection of various diseases such as tuberculosis, malaria and cancer. Nanomaterials (NMs) hold tremendous diagnostic potential due to their high surface-to-volume ratio and quantum confinement phenomenon, improving the detection limit of clinically relevant biomolecules in bio-fluids. Thus, they are helpful in the translation of bench-on platform to point-of-care (POC) screening device. The nanomaterial-based biosensor fabrication technology has also simplified and improved oral cancer (OC) or oral squamous cell carcinomas (OSCC) diagnosis. The fabrication of nano-bio sensors involves application specific modifications of NMs. The unique properties functionalized NMs have augmented their application on the nano-biosensing platform for the detection of clinically relevant biomolecules in bio-fluids. Therefore, this article summarizes the recent advancements in the process of fabrication of nano-biosensors for detection of OC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mehrotra, P. (2016). Biosensors and their applications: A review. Journal of Oral Biology and Craniofacial Research. https://doi.org/10.1016/j.jobcr.2015.12.002.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Jalil, O., Pandey, C. M., & Kumar, D. (2020). Electrochemical biosensor for the epithelial cancer biomarker EpCAM based on reduced graphene oxide modified with nanostructured titanium dioxide. Microchimica Acta. https://doi.org/10.1007/s00604-020-04233-7.

    Article  PubMed  Google Scholar 

  3. Wang,C., Li, Y., Xu, E., Zhou, Q., Chen, J., Wei, W., … Liu, S. (2019). A label-free PFP-based photoelectrochemical biosensor for highly sensitive detection of PARP-1 activity. Biosensors and Bioelectronics. https://doi.org/https://doi.org/10.1016/j.bios.2019.05.013

  4. Yadav, A. K., Dhiman, T. K., Lakshmi, G. B. V. S., Berlina, A. N., & Solanki, P. R. (2020). A highly sensitive label-free amperometric biosensor for norfloxacin detection based on chitosan-yttria nanocomposite. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2020.02.089.

    Article  PubMed  Google Scholar 

  5. Rabti, A., Raouafi, A., & Raouafi, N. (2020). Chapter 13—DNA markers and nano-biosensing approaches for tuberculosis diagnosis. In P. Kesharwani (Ed.), Nanotechnology Based Approaches for Tuberculosis Treatment (pp. 207–230). London: Academic Press. https://doi.org/10.1016/B978-0-12-819811-7.00013-8.

    Chapter  Google Scholar 

  6. Krampa, F. D., Aniweh, Y., Kanyong, P., & Awandare, G. A. (2020). Recent advances in the development of biosensors for malaria diagnosis. Sensors., 20, 799.

    Article  PubMed Central  Google Scholar 

  7. Singh, S., Singh, P. K., Umar, A., Lohia, P., Albargi, H., Castañeda, L., & Dwivedi, D. K. (2020). 2D Nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines. https://doi.org/10.3390/mi11080779.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Menon, K., Joy, R. A., Sood, N., & Mittal, R. (2013). The applications of bioMEMS in diagnosis, cell biology, and therapy: A review. BioNanoScience., 3, 356–366.

    Article  Google Scholar 

  9. Wang, S., Inci, F., De Libero, G., Singhal, A., & Demirci, U. (2013). Point-of-care assays for tuberculosis: Role of nanotechnology/microfluidics. Biotechnology Advances, 31, 438–449.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Arduini, F., Cinti, S., Caratelli, V., Amendola, L., Palleschi, G., & Moscone, D. (2019). Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosensors and Bioelectronics. https://doi.org/10.1016/j.bios.2018.10.0144.

    Article  PubMed  Google Scholar 

  11. Jiang, D., Ge, P., Wang, L., Jiang, H., Yang, M., Yuan, L., … Ju, X. (2019). A novel electrochemical mast cell-based paper biosensor for the rapid detection of milk allergen casein. Biosensors and Bioelectronics. https://doi.org/https://doi.org/10.1016/j.bios.2019.01.050

  12. Park, J., Lee, W., Kim, I., Kim, M., Jo, S., Kim, W., … Park, J. (2019). Ultrasensitive detection of fibrinogen using erythrocyte membrane-draped electrochemical impedance biosensor. Sensors and Actuators B: Chemical. https://doi.org/https://doi.org/10.1016/j.snb.2019.05.016

  13. Luo, Z., Xu, Y., Huang, Z., Chen, J., Wang, X., Li, D., … Duan, Y. (2020). A rapid, adaptative DNA biosensor based on molecular beacon-concatenated dual signal amplification strategies for ultrasensitive detection of p53 gene and cancer cells. Talanta. https://doi.org/https://doi.org/10.1016/j.talanta.2019.120638

  14. Bu, T., Huang, Q., Yan, L., Zhang, W., Dou, L., Huang, L., … Zhang, D. (2019). Applicability of biological dye tracer in strip biosensor for ultrasensitive detection of pathogenic bacteria. Food Chemistry. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.09.066

  15. Gao, J., Huang, W., Chen, Z., Yi, C., & Jiang, L. (2019). Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sensors and Actuators B: Chemical. https://doi.org/10.1016/j.snb.2019.02.020.

    Article  Google Scholar 

  16. Sin, M. L. Y., Mach, K. E., Wong, P. K., & Liao, J. C. (2014). Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Review of Molecular Diagnostics. https://doi.org/10.1586/14737159.2014.888313.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Yan, X., Yang, M., Zhang, Z., Liang, L., Wei, D., Wang, M., … Yao, J. (2019). The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosensors and Bioelectronics. https://doi.org/https://doi.org/10.1016/j.bios.2018.11.014

  18. Chakraborty, D., Viveka, T. S., Arvind, K., Shyamsundar, V., Kanchan, M., Alex, S. A., … Mukherjee, A. (2018). A facile gold nanoparticle-based ELISA system for detection of osteopontin in saliva: Towards oral cancer diagnostics. Clinica Chimica Acta. https://doi.org/https://doi.org/10.1016/j.cca.2017.09.009

  19. Warnakulasuriya, S. (2009). Global epidemiology of oral and oropharyngeal cancer. Oral Oncology, 45(4), 309–316. https://doi.org/10.1016/j.oraloncology.2008.06.002.

    Article  PubMed  Google Scholar 

  20. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90. https://doi.org/10.3322/caac.20107.

    Article  Google Scholar 

  21. Akhtar, S., Sheikh, A. A., & Qureshi, H. U. (2012). Chewing areca nut, betel quid, oral snuff, cigarette smoking and the risk of oesophageal squamous-cell carcinoma in South Asians: A multicentre case-control study. European Journal of Cancer. https://doi.org/10.1016/j.ejca.2011.06.008.

    Article  PubMed  Google Scholar 

  22. Subapriya, R., Thangavelu, A., Mathavan, B., Ramachandran, C. R., & Nagini, S. (2007). Assessment of risk factors for oral squamous cell carcinoma in Chidambaram Southern India: A case-control study. European Journal of Cancer Prevention. https://doi.org/10.1097/01.cej.0000228402.53106.9e.

    Article  PubMed  Google Scholar 

  23. Kumar, S., Mehrotra, D., Mishra, S., Goel, M. M., Kumar, S., Mathur, P., … Pandey, C. M. (2015). Epidemiology of substance abuse in the population of Lucknow. Journal of Oral Biology and Craniofacial Research. https://doi.org/https://doi.org/10.1016/j.jobcr.2015.08.010

  24. Mehrotra, D., Kumar, S., Mishra, S., Kumar, S., Mathur, P., Pandey, C. M., … Chaudhry, K. (2017). Pan masala habits and risk of oral precancer: A cross-sectional survey in 0.45 million people of North India. Journal of Oral Biology and Craniofacial Research. https://doi.org/https://doi.org/10.1016/j.jobcr.2016.12.003

  25. Walitzer, K. S., Dearing, R. L., Barrick, C., & Shyhalla, K. (2015). Tobacco smoking among male and female alcohol treatment-seekers: Clinical complexities, treatment length of stay, and goal achievement. Substance Use & Misuse. https://doi.org/10.3109/10826084.2014.962050.

    Article  Google Scholar 

  26. Wang, Z., Zhang, J., Guo, Y., Wu, X., Yang, W., Xu, L., … Fu, F. (2013). A novel electrically magnetic-controllable electrochemical biosensor for the ultra sensitive and specific detection of attomolar level oral cancer-related microRNA. Biosensors & Bioelectronics, 45:108-113. https://doi.org/https://doi.org/10.1016/j.bios.2013.02.007

  27. Senapati, S., Slouka, Z., Shah, S. S., Behura, S. K., Shi, Z., Stack, M. S., … Chang, H. C. (2014). An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon. Biosensors & Bioelectronics, 60:92–100. https://doi.org/https://doi.org/10.1016/j.bios.2014.04.008

  28. Rizwan, M., Koh, D., Booth, M. A., & Ahmed, M. U. (2018). Combining a gold nanoparticle-polyethylene glycol nanocomposite and carbon nanofiber electrodes to develop a highly sensitive salivary secretory immunoglobulin A immunosensor. Sensors and Actuators B: Chemical, 255, 557–563. https://doi.org/10.1016/j.snb.2017.08.079.

    Article  CAS  Google Scholar 

  29. Aydın, E. B., Aydın, M., & Sezgintürk, M. K. (2017). A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples. Biosensors and Bioelectronics, 97, 169–176. https://doi.org/10.1016/j.bios.2017.05.056.

    Article  CAS  PubMed  Google Scholar 

  30. Vigneshvar, S., Sudhakumari, C. C., Senthilkumaran, B., & Prakash, H. (2016). Recent advances in biosensor technology for potential applications: An overview. Frontiers in Bioengineering and Biotechnology, 4, 11. https://doi.org/10.3389/fbioe.2016.00011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Liu, Y., Liu, Y., & Wang, M. (2017). Design, optimization and application of small molecule biosensor in metabolic engineering. Frontiers in Microbiology, 8, 2012. https://doi.org/10.3389/fmicb.2017.02012.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Mostafa, S., Behafarid, F., Croy, J. R., Ono, L. K., Li, L., Yang, J. C., … Cuenya, B. R. (2010). Shape-dependent catalytic properties of Pt nanoparticles. Journal of the American Chemical Society. https://doi.org/https://doi.org/10.1021/ja106679z

  33. El-Sayed, M. A. (2004). Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Accounts of Chemical Research, 37(5), 326–333. https://doi.org/10.1021/ar020204f.

    Article  CAS  PubMed  Google Scholar 

  34. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B. https://doi.org/10.1021/jp026731y.

    Article  Google Scholar 

  35. Jain, P. K., Lee, K. S., El-Sayed, I. H., & El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. The Journal of Physical Chemistry B. https://doi.org/10.1021/jp057170o.

    Article  PubMed  Google Scholar 

  36. Nehl, C. L., & Hafner, J. H. (2008). Shape-dependent plasmon resonances of gold nanoparticles. Journal of Materials Chemistry. https://doi.org/10.1039/B714950F.

    Article  Google Scholar 

  37. Kumar, S., Chauhan, D., Renugopalakrishnan, V., & Malhotra, B. D. (2020). Biofunctionalized nanodot zirconia-based efficient biosensing platform for noninvasive oral cancer detection. MRS Communications, 10(4), 652–659. https://doi.org/10.1557/mrc.2020.75.

    Article  CAS  Google Scholar 

  38. Chan, Y. C., Chen, C. W., Chan, M. H., Chang, Y. C., Chang, W. M., Chi, L. H., … Hsiao, M. (2016). MMP2-sensing up-conversion nanoparticle for fluorescence biosensing in head and neck cancer cells. Biosensors & Bioelectronics, 80, 131–139. https://doi.org/https://doi.org/10.1016/j.bios.2016.01.049

  39. Zhang, Y., Chen, R., Xu, L., Ning, Y., Xie, S., & Zhang, G. J. (2015). Silicon nanowire biosensor for highly sensitive and multiplexed detection of oral squamous cell carcinoma biomarkers in saliva. Analytical Sciences, 31(2), 73–78. https://doi.org/10.2116/analsci.31.73.

    Article  PubMed  Google Scholar 

  40. Zheng, Y., Liang, W., Yuan, Y., Xiong, C., Xie, S., Wang, H., … Yuan, R. (2016). Wavelength-resolved simultaneous photoelectrochemical bifunctional sensor on single interface: A newly in vitro approach for multiplexed DNA monitoring in cancer cells. Biosensors & Bioelectronics, 81, 423-430. https://doi.org/https://doi.org/10.1016/j.bios.2016.03.032

  41. Lingen, M. W., Kalmar, J. R., Karrison, T., & Speight, P. M. (2008). Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncology, 44(1), 10–22. https://doi.org/10.1016/j.oraloncology.2007.06.011.

    Article  PubMed  Google Scholar 

  42. Yang, H., Xiang, Y., Guo, X., Wu, Y., Wen, Y., & Yang, H. (2018). Diazo-reaction-based SERS substrates for detection of nitrite in saliva. Sensors and Actuators B: Chemical, 271, 118–121. https://doi.org/10.1016/j.snb.2018.05.111.

    Article  CAS  Google Scholar 

  43. Ding, S., Das, S. R., Brownlee, B. J., Parate, K., Davis, T. M., Stromberg, L. R., … Claussen, J. C. (2018). CIP2A immunosensor comprised of vertically-aligned carbon nanotube interdigitated electrodes towards point-of-care oral cancer screening. Biosensors and Bioelectronics, 117, 68-74. https://doi.org/https://doi.org/10.1016/j.bios.2018.04.016

  44. Kumar, S., Kumar, S., Tiwari, S., Srivastava, S., Srivastava, M., Yadav, B. K., … Malhotra, B. D. (2015). Biofunctionalized nanostructured zirconia for biomedical application: A smart approach for oral cancer detection. Advanced Science, 2(8), 1500048. https://doi.org/https://doi.org/10.1002/advs.201500048

  45. Kah, J. C. Y., Kho, K. W., Lee, C. G. L., James, C., Sheppard, R., Shen, Z. X., … Olivo, M. C. (2007). Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. International Journal of Nanomedicine, 2(4), 785–798

  46. Wang, S., Wang, H., Jiao, J., Chen, K.-J., Owens, G. E., Kamei, K., … Tseng, H.-R. (2009). Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angewandte Chemie International Edition, 48(47), 8970–8973. https://doi.org/https://doi.org/10.1002/anie.200901668

  47. Lifson, M. A., Basu Roy, D., & Miller, B. L. (2014). Enhancing the detection limit of nanoscale biosensors via topographically selective functionalization. Analytical Chemistry, 86(2), 1016–1022. https://doi.org/10.1021/ac401523e.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, W.-W., Chen, Z.-L., & Jiang, X.-Y. (2009). Methods for cell micropatterning on two-dimensional surfaces and their applications in biology. Chinese Journal of Analytical Chemistry, 37(7), 943–949. https://doi.org/10.1016/S1872-2040(08)60113-9.

    Article  CAS  Google Scholar 

  49. Whitesides, G. M., & Christopher Love, J. (2001). The art of building small. Scientific American, 285(3), 38–47. https://doi.org/10.1038/scientificamerican0901-38.

    Article  CAS  PubMed  Google Scholar 

  50. Lin, M., Chen, J.-F., Lu, Y.-T., Zhang, Y., Song, J., Hou, S., … Tseng, H.-R. (2014). Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Accounts of Chemical Research, 47(10), 2941–2950. https://doi.org/https://doi.org/10.1021/ar5001617

  51. Choi, K. M. (2005). Photopatternable silicon elastomers with enhanced mechanical properties for high-fidelity nanoresolution soft lithography. The Journal of Physical Chemistry B. https://doi.org/10.1021/jp050302t.

    Article  PubMed  Google Scholar 

  52. Wei, F., Liao, W., Xu, Z., Yang, Y., Wong, D. T., & Ho, C.-M. (2009). Bio/abiotic interface constructed from nanoscale DNA dendrimer and conducting polymer for ultrasensitive biomolecular diagnosis. Small (Weinheim an der Bergstrasse, Germany), 5(15), 1784–1790. https://doi.org/10.1002/smll.200900369.

    Article  CAS  Google Scholar 

  53. Aydın, E. B., Aydın, M., & Sezgintürk, M. K. (2017). A highly selective electrochemical immunosensor based on conductive carbon black and star PGMA polymer composite material for IL-8 biomarker detection in human serum and saliva. Biosensors and Bioelectronics, 117, 720–728. https://doi.org/10.1016/j.bios.2018.07.010.

    Article  CAS  Google Scholar 

  54. Viswanathan, S., Rani, C., Vijay Anand, A., & Ho, J. A. (2009). Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Biosensors and Bioelectronics, 24(7), 1984–1989. https://doi.org/10.1016/j.bios.2008.10.006.

    Article  CAS  PubMed  Google Scholar 

  55. Hasell, T., Lagonigro, L., Peacock, A. C., Yoda, S., Brown, P. D., Sazio, P. J. A., & Howdle, S. M. (2008). Silver nanoparticle impregnated polycarbonate substrates for surface enhanced Raman spectroscopy. Advanced Functional Materials, 18(8), 1265–1271. https://doi.org/10.1002/adfm.200701429.

    Article  CAS  Google Scholar 

  56. Zimnitsky, D., Jiang, C., Xu, J., Lin, Z., & Tsukruk, V. V. (2007). Substrate- and time-dependent photoluminescence of quantum dots inside the ultrathin polymer LbL film. Langmuir, 23(8), 4509–4515. https://doi.org/10.1021/la0636917.

    Article  CAS  PubMed  Google Scholar 

  57. Yuan, W., Lu, Z., Wang, H., & Li, C. M. (2013). Sacrificial polymer thin-film template with tunability to construct high-density Au nanoparticle arrays and their refractive index sensing. Physical Chemistry Chemical Physics, 15(37), 15499–15507. https://doi.org/10.1039/C3CP52816B.

    Article  CAS  PubMed  Google Scholar 

  58. Jradi, K., Laour, D., Daneault, C., & Chabot, B. (2011). Control of the chemical and physical behaviour of silicon surfaces for enhancing the transition from hydrophilic to superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 374(1), 33–41. https://doi.org/10.1016/j.colsurfa.2010.10.050.

    Article  CAS  Google Scholar 

  59. Bañuls, M.-J., González-Martínez, M. Á., Sabek, J., García-Rupérez, J., & Maquieira, Á. (2019). Thiol-click photochemistry for surface functionalization applied to optical biosensing. Analytica Chimica Acta, 1060, 103–113. https://doi.org/10.1016/j.aca.2019.01.055.

    Article  CAS  PubMed  Google Scholar 

  60. Aydın, E. B., & Sezgintürk, M. K. (2018). A disposable and ultrasensitive ITO based biosensor modified by 6-phosphonohexanoic acid for electrochemical sensing of IL-1β in human serum and saliva. Analytica Chimica Acta, 1039, 41–50. https://doi.org/10.1016/j.aca.2018.07.055.

    Article  CAS  PubMed  Google Scholar 

  61. Mutin, P. H., Guerrero, G., & Vioux, A. (2003). Organic–inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. Comptes Rendus Chimie, 6(8), 1153–1164. https://doi.org/10.1016/j.crci.2003.07.006.

    Article  CAS  Google Scholar 

  62. Silverman, B. M., Wieghaus, K. A., & Schwartz, J. (2005). Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Langmuir, 21(1), 225–228. https://doi.org/10.1021/la048227l.

    Article  CAS  PubMed  Google Scholar 

  63. Liu, X., Fang, C., Yan, J., Li, H., & Tu, Y. (2018). A sensitive electrochemiluminescent biosensor based on AuNP-functionalized ITO for a label-free immunoassay of C-peptide. Bioelectrochemistry, 123, 211–218. https://doi.org/10.1016/j.bioelechem.2018.05.010.

    Article  CAS  PubMed  Google Scholar 

  64. Arya, S. K., Datta, M., Singh, S. P., & Malhotra, B. D. (2007). Biosensor for total cholesterol estimation using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane self-assembled monolayer. Analytical and Bioanalytical Chemistry, 389(7), 2235–2242. https://doi.org/10.1007/s00216-007-1655-7.

    Article  CAS  PubMed  Google Scholar 

  65. Song, H. Y., Zhou, X., Hobley, J., & Su, X. (2012). Comparative study of random and oriented antibody immobilization as measured by dual polarization interferometry and surface plasmon resonance spectroscopy. Langmuir, 28(1), 997–1004. https://doi.org/10.1021/la202734f.

    Article  CAS  PubMed  Google Scholar 

  66. Tajima, N., Takai, M., & Ishihara, K. (2011). Significance of antibody orientation unraveled: Well-oriented antibodies recorded high binding affinity. Analytical Chemistry, 83(6), 1969–1976. https://doi.org/10.1021/ac1026786.

    Article  CAS  PubMed  Google Scholar 

  67. Kim, E.-S., Shim, C.-K., Lee, J. W., Park, J. W., & Choi, K. Y. (2012). Synergistic effect of orientation and lateral spacing of protein G on an on-chip immunoassay. Analyst, 137(10), 2421–2430. https://doi.org/10.1039/C2AN16137K.

    Article  CAS  PubMed  Google Scholar 

  68. Chen, X., Zhou, G., Song, P., Wang, J., Gao, J., Lu, J., … Zuo, X. (2014). Ultrasensitive electrochemical detection of prostate-specific antigen by using antibodies anchored on a DNA nanostructural scaffold. Analytical chemistry, 86(15), 7337–7342. https://doi.org/https://doi.org/10.1021/ac500054x

  69. Sanavio, B., Scaini, D., Grunwald, C., Legname, G., Scoles, G., & Casalis, L. (2010). Oriented immobilization of prion protein demonstrated via precise interfacial nanostructure measurements. ACS Nano, 4(11), 6607–6616. https://doi.org/10.1021/nn101872w.

    Article  CAS  PubMed  Google Scholar 

  70. Adam, C., Olmos, J. M., & Doneux, T. (2018). Electrochemical monitoring of the reversible folding of surface-immobilized DNA i-motifs. Langmuir, 34(9), 3112–3118. https://doi.org/10.1021/acs.langmuir.7b04088.

    Article  CAS  PubMed  Google Scholar 

  71. Malhotra, R., Patel, V., Vaque, J. P., Gutkind, J. S., & Rusling, J. F. (2010). Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Analytical Chemistry, 82(8), 3118–3123. https://doi.org/10.1021/ac902802b.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Tan, Y., Wei, X., Zhao, M., Qiu, B., Guo, L., Lin, Z., & Yang, H. H. (2015). Ultraselective homogeneous electrochemical biosensor for DNA species related to oral cancer based on nicking endonuclease assisted target recycling amplification. Analytical Chemistry, 87(18), 9204–9208. https://doi.org/10.1021/acs.analchem.5b01470.

    Article  CAS  PubMed  Google Scholar 

  73. Munge, B. S., Coffey, A. L., Doucette, J. M., Somba, B. K., Malhotra, R., Patel, V., … Rusling, J. F. (2011). Nanostructured immunosensor for attomolar detection of cancer biomarker interleukin-8 using massively labeled superparamagnetic particles. Angewandte Chemie International Edition, 50(34), 7915–7918. https://doi.org/https://doi.org/10.1002/anie.201102941

  74. Mo, F., Chen, M., Meng, H., Wu, J., & Fu, Y. (2020). A DNA rolling motor for photoelectrochemical biosensing of oral cancer overexpressed 1. Sensors and Actuators B: Chemical, 309, 127824. https://doi.org/10.1016/j.snb.2020.127824.

    Article  CAS  Google Scholar 

  75. Tiwari, S., Gupta, P. K., Bagbi, Y., Sarkar, T., & Solanki, P. R. (2017). L-cysteine capped lanthanum hydroxide nanostructures for non-invasive detection of oral cancer biomarker. Biosensors and Bioelectronics, 89(Pt 2), 1042–1052. https://doi.org/10.1016/j.bios.2016.10.020.

    Article  CAS  PubMed  Google Scholar 

  76. Kumar, S., Sharma, J. G., Maji, S., & Malhotra, B. D. (2016). A biocompatible serine functionalized nanostructured zirconia based biosensing platform for non-invasive oral cancer detection. RSC Advances, 6(80), 77037–77046. https://doi.org/10.1039/C6RA07392A.

    Article  CAS  Google Scholar 

  77. Tuteja, S. K., Mutreja, R., Neethirajan, S., & Ingebrandt, S. (2019). Chapter 5—Bioconjugation of different nanosurfaces with biorecognition molecules for the development of selective nanosensor platforms. In A. Deep & S. Kumar (Eds.), Advances in nanosensors for biological and environmental analysis. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-817456-2.00005-X.

    Chapter  Google Scholar 

  78. Decher, G. (1997). Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 277(5330), 1232. https://doi.org/10.1126/science.277.5330.1232.

    Article  CAS  Google Scholar 

  79. Hammond, P. T. (1999). Recent explorations in electrostatic multilayer thin film assembly. Current Opinion in Colloid & Interface Science, 4(6), 430–442. https://doi.org/10.1016/S1359-0294(00)00022-4.

    Article  CAS  Google Scholar 

  80. Xu, J. J., Zhao, W., Luo, X. L., & Chen, H. Y. (2005). A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chemical Communications, 14(6), 792–794.

    Article  Google Scholar 

  81. Franchina, J. G., Lackowski, W. M., Dermody, D. L., Crooks, R. M., Bergbreiter, D. E., Sirkar, K., … Pishko, M. V. (1999). Electrostatic immobilization of glucose oxidase in a weak acid, polyelectrolyte hyperbranched ultrathin film on gold: Fabrication, characterization, and enzymatic activity. Analytical Chemistry. https://doi.org/https://doi.org/10.1021/ac981300q

  82. Vakurov, A., Simpson, C. E., Daly, C. L., Gibson, T. D., & Millner, P. A. (2004). Acetylcholinesterase-based biosensor electrodes for organophosphate pesticide detection: I. Modification of carbon surface for immobilization of acetylcholinesterase. Biosensors and Bioelectronics, 20(6), 1118–1125. https://doi.org/10.1016/j.bios.2004.03.039.

    Article  CAS  PubMed  Google Scholar 

  83. Goh, Y. Y., Ho, B., & Ding, J. L. (2002). A novel fluorescent protein-based biosensor for gram-negative bacteria. Applied and Environmental Microbiology, 68(12), 6343–6352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Darder, M., Casero, E., Pariente, F., & Lorenzo, E. (2000). Biosensors based on membrane-bound enzymes immobilized in a 5-(octyldithio)-2-nitrobenzoic acid layer on gold electrodes. Analytical Chemistry, 72(16), 3784–3792. https://doi.org/10.1021/ac000276p.

    Article  CAS  PubMed  Google Scholar 

  85. Catimel, B., Scott, A. M., Lee, F. T., Hanai, N., Ritter, G., Welt, S., … Nice, E. C. (1998). Direct immobilization of gangliosides onto gold-carboxymethyldextran sensor surfaces by hydrophobic interaction: Applications to antibody characterization. Glycobiology, 8(9), 927–938. https://doi.org/https://doi.org/10.1093/glycob/8.9.927

  86. Boozer, C., Ladd, J., Chen, S., & Jiang, S. (2006). DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Analytical Chemistry, 78(5), 1515–1519. https://doi.org/10.1021/ac051923l.

    Article  CAS  PubMed  Google Scholar 

  87. Padeste, C., Steiger, B., Grubelnik, A., & Tiefenauer, L. (2004). Molecular assembly of redox-conductive ferrocene–streptavidin conjugates—Towards bio-electrochemical devices. Biosensors and Bioelectronics, 20(3), 545–552. https://doi.org/10.1016/j.bios.2004.03.004.

    Article  CAS  PubMed  Google Scholar 

  88. Lu, Z., Li, C. M., Zhou, Q., Bao, Q.-L., & Cui, X. (2007). Covalently linked DNA/protein multilayered film for controlled DNA release. Journal of Colloid and Interface Science, 314(1), 80–88. https://doi.org/10.1016/j.jcis.2007.05.018.

    Article  CAS  PubMed  Google Scholar 

  89. Heise, A., Stamm, M., Rauscher, M., Duschner, H., & Menzel, H. (1998). Mixed silane self assembled monolayers and their in situ modification. Thin Solid Films, 327–329, 199–203. https://doi.org/10.1016/S0040-6090(98)00628-2.

    Article  Google Scholar 

  90. Lee, J. K., Chi, Y. S., & Choi, I. S. (2004). Reactivity of acetylenyl-terminated self-assembled monolayers on gold: Triazole formation. Langmuir, 20(10), 3844–3847. https://doi.org/10.1021/la049748b.

    Article  CAS  PubMed  Google Scholar 

  91. Christiaens, P., Vermeeren, V., Wenmackers, S., Daenen, M., Haenen, K., Nesládek, M., … Wagner, P. (2006). EDC-mediated DNA attachment to nanocrystalline CVD diamond films. Biosensors and Bioelectronics, 22(2):170–177. http://doi.org/https://doi.org/10.1016/j.bios.2005.12.013

  92. Nicolau, D. V., Taguchi, T., Taniguchi, H., & Yoshikawa, S. (1999). Protein patterning via radiation-assisted surface functionalization of conventional microlithographic materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects. https://doi.org/10.1016/S0927-7757(98)00395-1.

    Article  Google Scholar 

  93. Phizicky, E., Bastiaens, P. I. H., Zhu, H., Snyder, M., & Fields, S. (2003). Protein analysis on a proteomic scale. Nature, 422(6928), 208–215. https://doi.org/10.1038/nature01512.

    Article  CAS  PubMed  Google Scholar 

  94. Iijima, M., Yoshimoto, N., Niimi, T., Maturana, A. D., & Kuroda, S. (2013). Nanocapsule-based probe for evaluating the orientation of antibodies immobilized on a solid phase. Analyst. https://doi.org/10.1039/c3an00481c.

    Article  PubMed  Google Scholar 

  95. Choudhary, M., Yadav, P., Singh, A., Kaur, S., Ramirez-Vick, J., Chandra, P., … Singh, S. P. (2016). CD 59 targeted ultrasensitive electrochemical immunosensor for fast and noninvasive diagnosis of oral cancer. Electroanalysis, 28(10), 2565–2574. https://doi.org/https://doi.org/10.1002/elan.201600238

  96. Jimenez Jimenez, A. M., Rodrigo, M. A. M., Milosavljevic, V., Krizkova, S., Kopel, P., Heger, Z., & Adam, V. (2017). Gold nanoparticles-modified nanomaghemite and quantum dots-based hybridization assay for detection of HPV. Sensors and Actuators B: Chemical, 240, 503–510. https://doi.org/10.1016/j.snb.2016.08.091.

    Article  CAS  Google Scholar 

  97. Wang, Z., Fan, Y., Chen, J., Guo, Y., Wu, W., He, Y., … Fu, F. (2013). A microfluidic chip-based fluorescent biosensor for the sensitive and specific detection of label-free single-base mismatch via magnetic beads-based "sandwich" hybridization strategy. Electrophoresis, 34(15), 2177–2184. https://doi.org/https://doi.org/10.1002/elps.201300131

  98. Song, C. K., Oh, E., Kang, M. S., Shin, B. S., Han, S. Y., Jung, M., … Lee, H. (2018). Fluorescence-based immunosensor using three-dimensional CNT network structure for sensitive and reproducible detection of oral squamous cell carcinoma biomarker. Analytica Chimica Acta 1027, 101–108. https://doi.org/https://doi.org/10.1016/j.aca.2018.04.025

  99. Chan, Y.-C., Chan, M.-H., Chen, C.-W., Liu, R.-S., Hsiao, M., & Tsai, D. P. (2018). Near-infrared-activated fluorescence resonance energy transfer-based nanocomposite to sense MMP2-overexpressing oral cancer cells. ACS Omega, 3(2), 1627–1634. https://doi.org/10.1021/acsomega.7b01494.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Tan, G.-R., Wang, M., Hsu, C.-Y., Chen, N., & Zhang, Y. (2016). Small upconverting fluorescent nanoparticles for biosensing and bioimaging. Advanced Optical Materials, 4(7), 984–997. https://doi.org/10.1002/adom.201600141.

    Article  CAS  Google Scholar 

  101. Nair, P. R., & Alam, M. A. (2006). Performance limits of nanobiosensors. Applied Physics Letters, 88(23), 233120. https://doi.org/10.1063/1.2211310.

    Article  CAS  Google Scholar 

  102. Noah, N. M., & Ndangili, P. M. (2019). Current trends of nanobiosensors for point-of-care diagnostics. Journal of Analytical Methods in Chemistry, 2019, 2179718. https://doi.org/10.1155/2019/2179718.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Kumar, S., Kumar, J., & Sharma, S. N. (2018). Nanostructured titania based electrochemical impedimetric biosensor for non-invasive cancer detection. Materials Research Express, 5(12), 125405. https://doi.org/10.1088/2053-1591/aae1e2.

    Article  CAS  Google Scholar 

  104. Kumar, S., Kumar, S., Tiwari, S., Augustine, S., Srivastava, S., Yadav, B. K., & Malhotra, B. D. (2016). Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection. Sensors and Actuators B: Chemical, 235, 1–10. https://doi.org/10.1016/j.snb.2016.05.047.

    Article  CAS  Google Scholar 

  105. Kumar, S., Ashish, Kumar, S., Augustine, S., Yadav, S., Yadav, B. K., … Malhotra, B. D. (2018). Effect of Brownian motion on reduced agglomeration of nanostructured metal oxide towards development of efficient cancer biosensor. Biosensors and bioelectronics, 102, 247–255. https://doi.org/https://doi.org/10.1016/j.bios.2017.11.004

  106. Pachauri, N., Dave, K., Dinda, A., & Solanki, P. R. (2018). Cubic CeO2 implanted reduced graphene oxide-based highly sensitive biosensor for non-invasive oral cancer biomarker detection. Journal of Materials Chemistry B, 6(19), 3000–3012. https://doi.org/10.1039/C8TB00653A.

    Article  CAS  PubMed  Google Scholar 

  107. Kumar, S., Sharma, J. G., Maji, S., & Malhotra, B. D. (2016). Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. Biosensors and Bioelectronics, 78, 497–504. https://doi.org/10.1016/j.bios.2015.11.084.

    Article  CAS  PubMed  Google Scholar 

  108. Verma, S., Singh, A., Shukla, A., Kaswan, J., Arora, K., Ramirez-Vick, J., … Singh, S. P. (2017). Anti-IL8/AuNPs-rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer. ACS Applied Materials & Interfaces, 9(33), 27462–27474. https://doi.org/https://doi.org/10.1021/acsami.7b06839

  109. Dong, T., & Pires, N. M. M. (2017). Immunodetection of salivary biomarkers by an optical microfluidic biosensor with polyethylenimine-modified polythiophene-C70 organic photodetectors. Biosensors and Bioelectronics, 94, 321–327. https://doi.org/10.1016/j.bios.2017.03.005.

    Article  CAS  PubMed  Google Scholar 

  110. Zhou, W., Ma, Y., Yang, H., Ding, Y., & Luo, X. (2011). A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma. International Journal of Nanomedicine, 6, 381–386. https://doi.org/10.2147/IJN.S13249.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Yuan, L., Tu, W., Bao, J., & Dai, Z. (2015). Versatile biosensing platform for DNA detection based on a DNAzyme and restriction-endonuclease-assisted recycling. Analytical Chemistry, 87(1), 686–692. https://doi.org/10.1021/ac5034903.

    Article  CAS  PubMed  Google Scholar 

  112. Wei, F., Patel, P., Liao, W., Chaudhry, K., Zhang, L., Arellano-Garcia, M., … Wong, D. T. (2009). Electrochemical sensor for multiplex biomarkers detection. Clinical Cancer Research, 15(13), 4446–4452. https://doi.org/https://doi.org/10.1158/1078-0432.ccr-09-0050

  113. Otieno, B. A., Krause, C. E., Latus, A., Chikkaveeraiah, B. V., Faria, R. C., & Rusling, J. F. (2014). On-line protein capture on magnetic beads for ultrasensitive microfluidic immunoassays of cancer biomarkers. Biosensors and Bioelectronics, 53, 268–274. https://doi.org/10.1016/j.bios.2013.09.054.

    Article  CAS  PubMed  Google Scholar 

  114. Torrente-Rodríguez, R. M., Campuzano, S., Ruiz-Valdepeñas Montiel, V., Gamella, M., & Pingarrón, J. M. (2016). Electrochemical bioplatforms for the simultaneous determination of interleukin (IL)-8 mRNA and IL-8 protein oral cancer biomarkers in raw saliva. Biosensors and Bioelectronics, 77, 543–548. https://doi.org/10.1016/j.bios.2015.10.016.

    Article  CAS  PubMed  Google Scholar 

  115. Epstein, J. B., Güneri, P., Boyacioglu, H., & Abt, E. (2013). The limitations of the clinical oral examination in detecting dysplastic oral lesions and oral squamous cell carcinoma. Texas Dental Journal., 130, 410–424.

    PubMed  Google Scholar 

  116. Fedele, S. (2009). Diagnostic aids in the screening of oral cancer. Head & Neck Oncology, 1, 5. https://doi.org/10.1186/1758-3284-1-5.

    Article  Google Scholar 

  117. Carreras-Torras, C., & Gay-Escoda, C. (2015). Techniques for early diagnosis of oral squamous cell carcinoma: Systematic review. Medicina Oral, Patologia Oral Y Cirugia Bucal, 20(3), e305-315. https://doi.org/10.4317/medoral.20347.

    Article  PubMed Central  PubMed  Google Scholar 

  118. Chen, Y.-W., Lin, J.-S., Wu, C.-H., Lui, M.-T., Kao, S.-Y., & Fong, Y. (2007). Application of in vivo stain of methylene blue as a diagnostic aid in the early detection and screening of oral squamous cell carcinoma and precancer lesions. Journal of the Chinese Medical Association. https://doi.org/10.1016/S1726-4901(08)70048-0.

    Article  PubMed  Google Scholar 

  119. Du, G., Li, C., Chen, H., Chen, X., Xiao, Q., Cao, Z., … Cai, X. (2007). Rose bengal staining in detection of oral precancerous and malignant lesions with colorimetric evaluation: A pilot study. International Journal of Cancer. https://doi.org/https://doi.org/10.1002/ijc.22467

  120. Chen, Y.-W., Lin, J.-S., Fong, J. H.-J., Wang, I.-K., Chou, S.-J., Wu, C.-H., … Kao, S.-Y. (2007). Use of methylene blue as a diagnostic aid in early detection of oral cancer and precancerous lesions. The British Journal of Oral & Maxillofacial Surgery, 45(7), 590–591. https://doi.org/https://doi.org/10.1016/j.bjoms.2006.08.017

  121. Riaz, A., Shreedhar, B., Kamboj, M., & Natarajan, S. (2013). Methylene blue as an early diagnostic marker for oral precancer and cancer. SpringerPlus, 2(1), 95. https://doi.org/10.1186/2193-1801-2-95.

    Article  PubMed Central  PubMed  Google Scholar 

  122. Panta, P., Rich, L. J., & Seshadri, M. (2019). Oral cancer screening: Application of vital stains as adjuncts to clinical examination. In P. Panta (Ed.), Oral cancer detection. Cham: Springer. https://doi.org/10.1007/978-3-319-61255-3_7.

    Chapter  Google Scholar 

  123. Zhang, L., Bi, L., Shi, J., Zhang, Z., Cao, W., Lin, J., … Yu, Y. (2013). A quantitative diagnostic method for oral mucous precancerosis by Rose Bengal fluorescence spectroscopy. Lasers in Medical Science, 28(1), 241–246. https://doi.org/https://doi.org/10.1007/s10103-012-1054-y

  124. Chaudhari, A., Hegde-Shetiya, S., Shirahatti, R., & Agrawal, D. (2013). Comparison of different screening methods in estimating the prevalence of precancer and cancer amongst male inmates of a jail in Maharashtra, India. Asian Pacific Journal of Cancer Prevention: APJCP, 14(2), 859–864. https://doi.org/10.7314/apjcp.2013.14.2.859.

    Article  PubMed  Google Scholar 

  125. Epstein, J. B., Scully, C., & Spinelli, J. (1992). Toluidine blue and Lugol’s iodine application in the assessment of oral malignant disease and lesions at risk of malignancy. Journal of Oral Pathology & Medicine: Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 21(4), 160–163. https://doi.org/10.1111/j.1600-0714.1992.tb00094.x.

    Article  CAS  Google Scholar 

  126. Awan, K., Yang, Y., Morgan, P., & Warnakulasuriya, S. (2012). Utility of toluidine blue as a diagnostic adjunct in the detection of potentially malignant disorders of the oral cavity: A clinical and histological assessment. Oral Diseases, 18(8), 728–733. https://doi.org/10.1111/j.1601-0825.2012.01935.x.

    Article  PubMed  Google Scholar 

  127. Warnakulasuriya, K., & a. a. S., & Johnson, N. W. . (1996). Sensitivity and specificity of OraScan® toluidine blue mouthrinse in the detection of oral cancer and precancer. Journal of Oral Pathology & Medicine, 25(3), 97–103. https://doi.org/10.1111/j.1600-0714.1996.tb00201.x.

    Article  CAS  Google Scholar 

  128. Patton, L. L., Epstein, J. B., & Kerr, A. R. (2008). Adjunctive techniques for oral cancer examination and lesion diagnosis: A systematic review of the literature. Centre for Reviews and Dissemination (UK). Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK75331/

  129. Rethman, M. P., Carpenter, W., Cohen, E. E. W., Epstein, J., Evans, C. A., Flaitz, C. M., … Meyer, D. M. (2010). Evidence-based clinical recommendations regarding screening for oral squamous cell carcinomas. The Journal of the American Dental Association, 141(5), 509-520. https://doi.org/https://doi.org/10.14219/jada.archive.2010.0223

  130. Sharma, G. (2015). Diagnostic aids in detection of oral cancer: An update. World Journal of Stomatology, 4(3), 115–120.

    Article  Google Scholar 

  131. Sambandham, T., Masthan, K. M. K., Kumar, M. S., & Jha, A. (2013). The application of vizilite in oral cancer. Journal of Clinical and Diagnostic Research: JCDR, 7(1), 185–186. https://doi.org/10.7860/JCDR/2012/5163.2704.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ibrahim, S. S., Al-Attas, S. A., Darwish, Z. E., Amer, H. A., & Hassan, M. H. (2014). Effectiveness of the Microlux/DLTM chemiluminescence device in screening of potentially malignant and malignant oral lesions. Asian Pacific Journal of Cancer Prevention: APJCP, 15(15), 6081–6086. https://doi.org/10.7314/apjcp.2014.15.15.6081.

    Article  PubMed  Google Scholar 

  133. Rashid, A., & Warnakulasuriya, S. (2015). The use of light-based (optical) detection systems as adjuncts in the detection of oral cancer and oral potentially malignant disorders: A systematic review. Journal of Oral Pathology & Medicine: Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 44(5), 307–328. https://doi.org/10.1111/jop.12218.

    Article  CAS  Google Scholar 

  134. Bhatia, N., Lalla, Y., Vu, A. N., & Farah, C. S. (2013). Advances in optical adjunctive AIDS for visualisation and detection of oral malignant and potentially malignant lesions. International Journal of Dentistry, 2013, 194029. https://doi.org/10.1155/2013/194029.

    Article  PubMed Central  PubMed  Google Scholar 

  135. Liu, D., Zhao, X., Zeng, X., Dan, H., & Chen, Q. (2016). Non-invasive techniques for detection and diagnosis of oral potentially malignant disorders. The Tohoku Journal of Experimental Medicine, 238(2), 165–177. https://doi.org/10.1620/tjem.238.165.

    Article  CAS  PubMed  Google Scholar 

  136. Guze, K., Pawluk, H. C., Short, M., Zeng, H., Lorch, J., Norris, C., & Sonis, S. (2015). Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans. Head & Neck, 37(4), 511–517. https://doi.org/10.1002/hed.23629.

    Article  Google Scholar 

  137. Green, B., Cobb, A. R. M., Brennan, P. A., & Hopper, C. (2014). Optical diagnostic techniques for use in lesions of the head and neck: Review of the latest developments. The British Journal of Oral & Maxillofacial Surgery, 52(8), 675–680. https://doi.org/10.1016/j.bjoms.2014.06.010.

    Article  Google Scholar 

  138. Jerjes, W., Swinson, B., Pickard, D., Thomas, G. J., & Hopper, C. (2004). Detection of cervical intranodal metastasis in oral cancer using elastic scattering spectroscopy. Oral Oncology, 40(7), 673–678. https://doi.org/10.1016/j.oraloncology.2004.01.009.

    Article  CAS  PubMed  Google Scholar 

  139. Stephen, M. M., Jayanthi, J. L., Unni, N. G., Kolady, P. E., Beena, V. T., Jeemon, P., & Subhash, N. (2013). Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: A feasibility study. BMC Cancer, 13(1), 278. https://doi.org/10.1186/1471-2407-13-278.

    Article  PubMed Central  PubMed  Google Scholar 

  140. Jayanthi, J. L., Nisha, G. U., Manju, S., Philip, E. K., Jeemon, P., Baiju, K. V., … Subhash, N. (2011). Diffuse reflectance spectroscopy: Diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity. BMJ Open, 1(1), e000071. https://doi.org/https://doi.org/10.1136/bmjopen-2011-000071

  141. Yang, S.-W., Lee, Y.-S., Chang, L.-C., Hwang, C.-C., & Chen, T.-A. (2012). Diagnostic significance of narrow-band imaging for detecting high-grade dysplasia, carcinoma in situ, and carcinoma in oral leukoplakia. The Laryngoscope, 122(12), 2754–2761. https://doi.org/10.1002/lary.23629.

    Article  PubMed  Google Scholar 

  142. Hamdoon, Z., Jerjes, W., Upile, T., McKenzie, G., Jay, A., & Hopper, C. (2013). Optical coherence tomography in the assessment of suspicious oral lesions: An immediate ex vivo study. Photodiagnosis and Photodynamic Therapy, 10(1), 17–27. https://doi.org/10.1016/j.pdpdt.2012.07.005.

    Article  PubMed  Google Scholar 

  143. Nathan, C.-A. O., Kaskas, N. M., Ma, X., Chaudhery, S., Lian, T., Moore-Medlin, T., … Mehta, V. (2014). Confocal laser endomicroscopy in the detection of head and neck precancerous lesions. Otolaryngology-Head and Neck Surgery: Official Journal of American Academy of Otolaryngology-Head and Neck Surgery, 151(1), 73–80. https://doi.org/https://doi.org/10.1177/0194599814528660

  144. Olivo, M., Bhuvaneswari, R., & Keogh, I. (2011). Advances in bio-optical imaging for the diagnosis of early oral cancer. Pharmaceutics, 3(3), 354–378. https://doi.org/10.3390/pharmaceutics3030354.

    Article  PubMed Central  PubMed  Google Scholar 

  145. Spizzo, G., Fong, D., Wurm, M., Ensinger, C., Obrist, P., Hofer, C., … Went, P. (2011). EpCAM expression in primary tumour tissues and metastases: An immunohistochemical analysis. Journal of Clinical Pathology, 64(5), 415. https://doi.org/https://doi.org/10.1136/jcp.2011.090274

  146. Coletta, R. D., Cotrim, P., Vargas, P. A., Villalba, H., Pires, F. R., de Moraes, M., & de Almeida, O. P. (2001). Basaloid squamous carcinoma of the oral cavity: Report of 2 cases and study of AgNOR, PCNA, p53, and MMP expression. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 91(5), 563–569. https://doi.org/10.1067/moe.2001.113161.

    Article  CAS  PubMed  Google Scholar 

  147. Mascolo, M., Siano, M., Ilardi, G., Russo, D., Merolla, F., Rosa, G. D., & Staibano, S. (2012). Epigenetic disregulation in oral cancer. International Journal of Molecular Sciences, 13(2), 2331–2353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pintos, J., Black, M. J., Sadeghi, N., Ghadirian, P., Zeitouni, A. G., Viscidi, R. P., … Franco, E. L. (2008). Human papillomavirus infection and oral cancer: A case-control study in Montreal, Canada. Oral Oncology 44(3), 242–250. https://doi.org/https://doi.org/10.1016/j.oraloncology.2007.02.005

  149. Chikui, T., Kitamoto, E., Kawano, S., Sugiura, T., Obara, M., Simonetti, A. W., … Yoshiura, K. (2012). Pharmacokinetic analysis based on dynamic contrast-enhanced MRI for evaluating tumor response to preoperative therapy for oral cancer. Journal of Magnetic Resonance Imaging, 36(3), 589–597. https://doi.org/https://doi.org/10.1002/jmri.23704

  150. Schöder, H., Carlson, D. L., Kraus, D. H., Stambuk, H. E., Gönen, M., Erdi, Y. E., … Wong, R. J. (2006). 18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 47(5), 755–762

  151. Rhodus, N. L., Ho, V., Miller, C. S., Myers, S., & Ondrey, F. (2005). NF-κB dependent cytokine levels in saliva of patients with oral preneoplastic lesions and oral squamous cell carcinoma. Cancer Detection and Prevention, 29(1), 42–45. https://doi.org/10.1016/j.cdp.2004.10.003.

    Article  CAS  PubMed  Google Scholar 

  152. Brailo, V., Vucicevic-Boras, V., Lukac, J., Biocina-Lukenda, D., Zilic-Alajbeg, I., Milenovic, A., & Balija, M. (2012). Salivary and serum interleukin 1 beta, interleukin 6 and tumor necrosis factor alpha in patients with leukoplakia and oral cancer. Medicina oral, patología oral y cirugía bucal, 17(1), e10.

    Article  PubMed  Google Scholar 

  153. Katakura, A., Kamiyama, I., Takano, N., Shibahara, T., Muramatsu, T., Ishihara, K., … Shouno, T. (2007). Comparison of salivary cytokine levels in oral cancer patients and healthy subjects. The Bulletin of Tokyo Dental College, 48(4), 199–203

  154. Al-Mahfoud, M. M., Al-Saimary, I. E., & Al-Shawi, A. A. (2019). The expression of Interlukin 2(IL-2), Interlukin 8(IL-8) and Interlukin 6(IL-6) in patients with oral and oropharyngeal squamous cell carcinoma in Basrah city (A case control study). Journal of Physics: Conference Series, 1294, 062003. https://doi.org/10.1088/1742-6596/1294/6/062003.

    Article  CAS  Google Scholar 

  155. Pickering, V., Jordan, R. C. K., & Schmidt, B. L. (2007). Elevated salivary endothelin levels in oral cancer patients—A pilot study. Oral Oncology, 43(1), 37–41. https://doi.org/10.1016/j.oraloncology.2005.12.027.

    Article  CAS  PubMed  Google Scholar 

  156. Irfan, S., Tandon, N., Srivastava, A., Sharma, R., & Kumar, V. (2015). Serum endothelin-1 as biomarker in oral cancer: A case control study International. Journal of Bioassays. https://doi.org/10.21746/IJBIO.2015.11.

    Article  Google Scholar 

  157. Rajkumar, K., Ramya, R., Nandhini, G., Rajashree, P., Ramesh Kumar, A., & Nirmala Anandan, S. (2015). Salivary and serum level of CYFRA 21–1 in oral precancer and oral squamous cell carcinoma. Oral Diseases, 21(1), 90–96. https://doi.org/10.1111/odi.12216.

    Article  CAS  PubMed  Google Scholar 

  158. Li, T., & Yang, M. (2011). Electrochemical sensor utilizing ferrocene loaded porous polyelectrolyte nanoparticles as label for the detection of protein biomarker IL-6. Sensors and Actuators B: Chemical, 158(1), 361–365. https://doi.org/10.1016/j.snb.2011.06.035.

    Article  CAS  Google Scholar 

  159. Liu, D., Zhao, X., Zeng, X., Dan, H., & Chen, Q. (2016). Paper-based plasmonic platform for sensitive, noninvasive, and rapid cancer screening. Biosensors and Bioelectronics, 54, 128–134. https://doi.org/10.1016/j.bios.2013.10.067.

    Article  CAS  Google Scholar 

  160. Wang, Y., Wang, Y., Pang, X., Du, B., Li, H., Wu, D., & Wei, Q. (2015). Ultrasensitive sandwich-type electrochemical immunosensor based on dual signal amplification strategy using multifunctional graphene nanocomposites as labels for quantitative detection of tissue polypeptide antigen. Sensors and Actuators B: Chemical, 214, 124–131. https://doi.org/10.1016/j.snb.2015.03.021.

    Article  CAS  Google Scholar 

  161. Wang, H.-C., Nguyen, N.-V., Lin, R.-Y., & Jen, C.-P. (2017). Characterizing esophageal cancerous cells at different stages using the dielectrophoretic impedance measurement method in a microchip. Sensors. https://doi.org/10.3390/s17051053.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wu, I. C., Weng, Y.-H., Lu, M.-Y., Jen, C.-P., Fedorov, V. E., Chen, W. C., … Wang, H.-C. (2017). Nano-structure ZnO/Cu2O photoelectrochemical and self-powered biosensor for esophageal cancer cell detection. Optics Express. https:doi.org/https://doi.org/10.1364/OE.25.007689

  163. Kumar, S., Panwar, S., Kumar, S., Augustine, S., & Malhotra, B. D. (2019). Biofunctionalized nanostructured yttria modified non-invasive impedometric biosensor for efficient detection of oral cancer. Nanomaterials (Basel, Switzerland). https://doi.org/10.3390/nano9091190.

    Article  PubMed Central  Google Scholar 

  164. Verma, S., & Singh, S. P. (2019). Non-invasive oral cancer detection from saliva using zinc oxide–reduced graphene oxide nanocomposite based bioelectrode. MRS Communications, 9(4), 1227–1234. https://doi.org/10.1557/mrc.2019.138.

    Article  CAS  Google Scholar 

  165. Chen, J., Zhang, J., Guo, Y., Li, J., Fu, F., Yang, H. H., & Chen, G. (2011). An ultrasensitive electrochemical biosensor for detection of DNA species related to oral cancer based on nuclease-assisted target recycling and amplification of DNAzyme. Chemical Communications, 47(28), 8004–8006. https://doi.org/10.1039/c1cc11929j.

    Article  CAS  PubMed  Google Scholar 

  166. Wang, J. H., Wang, B., Liu, Q., Li, Q., Huang, H., Song, L., … Chu, P. K. (2013). Bimodal optical diagnostics of oral cancer based on Rose Bengal conjugated gold nanorod platform. Biomaterials, 34(17), 4274–4283. https://doi.org/https://doi.org/10.1016/j.biomaterials.2013.02.012

  167. Islam, M. N., Masud, M. K., Nguyen, N.-T., Gopalan, V., Alamri, H. R., Alothman, Z. A., … Shiddiky, M. J. A. (2018). Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level. Biosensors and Bioelectronics, 101, 275-281. https://doi.org/https://doi.org/10.1016/j.bios.2017.09.027

Download references

Acknowledgements

The authors would like to acknowledge the Department of Health Research – Multidisciplinary Research Unit, King George’s Research Unit, Lucknow for providing the required infrastructure to prepare this manuscript. SV would like to acknowledge the Indian Council of Medical Research, New Delhi, India for the Research Associate fellowship.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JS and SK conceived the idea, JS and SV prepared the manuscript, JS performed the literature search and data analysis, JS and SV prepared illustration, SK and DM helped in drafting and critical review of the manuscript.

Corresponding authors

Correspondence to Sumit Kumar or Divya Mehrotra.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, J., Verma, S., Kumar, S. et al. Recent Advances in Nano-Bio-Sensing Fabrication Technology for the Detection of Oral Cancer. Mol Biotechnol 63, 339–362 (2021). https://doi.org/10.1007/s12033-021-00306-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00306-x

Keywords

Navigation