Skip to main content
Log in

Construction of Genetically Modified Lactococcus lactis Producing Anti-human-CTLA-4 Single-Chain Fragment Variable

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria are human commensal organisms that have immunomodulatory and metabolism-promoting effects. In addition, due to the increasing demand for biopharmaceuticals, genetically modified lactic acid bacteria (gmLAB) that produce recombinant proteins are expected to be used as microbial therapeutics and next-generation probiotics. In this study, we constructed a gmLAB strain that produces anti-human cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) single-chain fragment variable (CTLA4scFv) for possible use in a cancer treatment strategy using gmLAB. CTLA-4, an immune checkpoint molecule, suppresses the anti-cancer immune response; thus, inhibition of CTLA-4 signaling is important in cancer therapy. In this study, we designed a CTLA4scFv composed of a heavy and light chain of the variable region from anti-human CTLA-4 antibody connected by a flexible peptide linker. CTLA4scFv was expressed using nisin controlled gene expression (NICE) system, a lactococcal inducible gene expression system, and the DNA sequence encoding CTLA4scFv was inserted downstream of the PnisA promoter of the gene expression vector pNZ8148#2. Furthermore, expression of recombinant CTLA4scFv was confirmed by Western blotting, and the immunoreactivity of recombinant CTLA4scFv against human CTLA-4 protein was examined using ELISA. We speculate that gmLAB producing bioactive CTLA4scFv will become an attractive approach for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Food, Organization, A. and Organization, W. H. (2006). Probiotics in food: Health and nutritional properties and guidelines for evaluation, FAO.

  2. Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., et al. (2014). Expert consensus document: The 501 international scientific association for probiotics and prebiotics consensus statement on 502 the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514.

    Article  Google Scholar 

  3. Vallianou, N., Stratigou, T., Christodoulatos, G. S., Tsigalou, C., & Dalamaga, M. (2020). Probiotics, prebiotics, synbiotics, postbiotics, and obesity: Current evidence, controversies, and perspectives. Current Obesity Reports.

  4. Yousefi, B., Eslami, M., Ghasemian, A., Kokhaei, P., Salek Farrokhi, A., & Darabi, N. (2019). Probiotics importance and their immunomodulatory properties. Journal of Cellular Physiology, 234, 8008–8018.

    Article  CAS  Google Scholar 

  5. Shigemori, S., & Shimosato, T. (2017). Applications of genetically modified immunobiotics with high immunoregulatory capacity for treatment of inflammatory bowel diseases. Frontiers in Immunology, 8, 22.

    Article  CAS  Google Scholar 

  6. O'Toole, P. W., Marchesi, J. R., & Hill, C. (2017). Next-generation probiotics: The spectrum from probiotics to live Biotherapeutics. Nature Microbiology, 2, 17057.

    Article  CAS  Google Scholar 

  7. Jimenez, M., Langer, R., & Traverso, G. (2019). Microbial therapeutics: New opportunities for drug delivery. The Journal of Experimental Medicine, 216, 1005–1009.

    Article  CAS  Google Scholar 

  8. Shigemori, S., Watanabe, T., Kudoh, K., Ihara, M., Nigar, S., Yamamoto, Y., et al. (2015). Oral delivery of Lactococcus lactis that secretes bioactive heme oxygenase-1 alleviates development of acute colitis in mice. Microbial Cell Factories, 14, 189.

    Article  CAS  Google Scholar 

  9. McLean, M. H., Andrews, C., Hanson, M. L., Baseler, W. A., Anver, M. R., Senkevitch, E., et al. (2017). Interleukin-27 is a potential rescue therapy for acute severe colitis through interleukin-10–dependent, T-cell–independent attenuation of colonic mucosal innate immune responses. Inflammatory Bowel Diseases, 23, 1983–1995.

    Article  Google Scholar 

  10. Hanson, M. L., Hixon, J. A., Li, W., Felber, B. K., Anver, M. R., Stewart, C. A., et al. (2014). Oral delivery of IL-27 recombinant bacteria attenuates immune colitis in mice. Gastroenterology, 146, 210–221.

    Article  CAS  Google Scholar 

  11. Steidler, L., Hans, W., Schotte, L., Neirynck, S., Obermeier, F., Falk, W., et al. (2000). Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science, 289, 1352–1355.

    Article  CAS  Google Scholar 

  12. Ahmad, Z. A., Yeap, S. K., Ali, A. M., Ho, W. Y., Alitheen, N. B., & Hamid, M. (2012). scFv antibody: Principles and clinical application. Clinical and Developmental Immunology, 2012, 980250.

    Article  CAS  Google Scholar 

  13. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., et al. (1988). Single-chain antigen-binding proteins. Science, 242, 423–426.

    Article  CAS  Google Scholar 

  14. Shigemori, S., Ihara, M., Sato, T., Yamamoto, Y., Nigar, S., Ogita, T., et al. (2017). Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis. Applied Microbiology and Biotechnology, 101, 341–349.

    Article  CAS  Google Scholar 

  15. Walunas, T. L., Lenschow, D. J., Bakker, C. Y., Linsley, P. S., Freeman, G. J., Green, J. M., et al. (1994). CTLA-4 can function as a negative regulator of T cell activation. Immunity, 1, 405–413.

    Article  CAS  Google Scholar 

  16. Ribas, A., & Wolchok, J. D. (2018). Cancer immunotherapy using checkpoint blockade. Science, 359, 1350–1355.

    Article  CAS  Google Scholar 

  17. Graziani, G., Tentori, L., & Navarra, P. (2012). Ipilimumab: a novel immunostimulatory monoclonal antibody for the treatment of cancer. Pharmacological Research, 65, 9–22.

    Article  CAS  Google Scholar 

  18. Samaranayake, H., Wirth, T., Schenkwein, D., Raty, J. K., & Yla-Herttuala, S. (2009). Challenges in monoclonal antibody-based therapies. Annals of Medicine, 41, 322–331.

    Article  CAS  Google Scholar 

  19. Mierau, I., & Kleerebezem, M. (2005). 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Applied Microbiology and Biotechnology, 68, 705–717.

    Article  CAS  Google Scholar 

  20. Shigemori, S., Yonekura, S., Sato, T., Nakanishi, M., Otani, H., & Shimosato, T. (2012). Expression of a biologically active GFP-α S1-casein fusion protein in Lactococcus lactis. Current Microbiology, 64, 569–575.

    Article  CAS  Google Scholar 

  21. Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31, 3381–3385.

    Article  CAS  Google Scholar 

  22. Shigemori, S., Namai, F., Yamamoto, Y., Nigar, S., Sato, T., Ogita, T., & Shimosato, T. (2017). Genetically modified Lactococcus lactis producing a green fluorescent protein–bovine lactoferrin fusion protein suppresses proinflammatory cytokine expression in lipopolysaccharide-stimulated RAW 264.7 cells. Journal of Dairy Science100, 7007–7015.

    Article  CAS  Google Scholar 

  23. Namai, F., Yamamoto, Y., Sato, T., Ogita, T., & Shimosato, T. (2018). Recombinant mouse calcitonin gene-related peptide secreted by Lactococcus lactis inhibits lipopolysaccharide-induced inflammatory response in macrophages. Animal Science Journal, 89, 1707–1711.

    Article  CAS  Google Scholar 

  24. Namai, F., Shigemori, S., Sudo, K., Sato, T., Yamamoto, Y., Nigar, S., et al. (2018). Recombinant mouse osteocalcin secreted by Lactococcus lactis promotes glucagon-like peptide-1 induction in STC-1 cells. Current Microbiology, 75, 92–98.

    Article  CAS  Google Scholar 

  25. Namai, F., Shigemori, S., Ogita, T., Sato, T., & Shimosato, T. (2020). Construction of genetically modified Lactococcus lactis that produces bioactive anti-interleukin-4 single-chain fragment variable. Molecular Biology Reports. https://doi.org/10.1007/s11033-020-05765-0.

    Article  Google Scholar 

  26. Rowshanravan, B., Halliday, N., & Sansom, D. M. (2018). CTLA-4: A moving target in immunotherapy. Blood, 131, 58–67.

    Article  CAS  Google Scholar 

  27. Buchbinder, E. I., & Desai, A. (2016). CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. American Journal of Clinical Oncology, 39, 98–106.

    Article  CAS  Google Scholar 

  28. Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., et al. (2000). Immunologic self-tolerance maintained by CD25+ CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte–associated antigen 4. The Journal of Experimental Medicine, 192, 303–310.

    Article  CAS  Google Scholar 

  29. Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., et al. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science, 322, 271–275.

    Article  CAS  Google Scholar 

  30. Whiteside, T. L. (2012). What are regulatory T cells (Treg) regulating in cancer and why? Seminars in Cancer Biology, 22, 327–334.

    Article  CAS  Google Scholar 

  31. Ondondo, B., Jones, E., Godkin, A., & Gallimore, A. (2013). Home sweet home: The tumor microenvironment as a haven for regulatory T cells. Frontiers in Immunology, 4, 197.

    Article  Google Scholar 

  32. Boutros, C., Tarhini, A., Routier, E., Lambotte, O., Ladurie, F. L., Carbonnel, F., et al. (2016). Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nature Reviews Clinical Oncology, 13, 473–486.

    Article  CAS  Google Scholar 

  33. Vaks, L., & Benhar, I. (2014). Production of stabilized scFv antibody fragments in the E. coli bacterial cytoplasm. Methods and Molecular Biology, 1060, 171–184.

    Article  CAS  Google Scholar 

  34. de Ruyter, P. G., Kuipers, O. P., & de Vos, W. M. (1996). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Applied and Environmental Microbiology, 62, 3662–3667.

    Article  Google Scholar 

  35. Kuipers, O. P., de Ruyter, P. G., Kleerebezem, M., & de Vos, W. M. (1997). Controlled overproduction of proteins by lactic acid bacteria. Trends in Biotechnology, 15, 135–140.

    Article  CAS  Google Scholar 

  36. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68, 394–424.

    Google Scholar 

  37. de Moreno, A. D., LeBlanc, J. G., Perdigon, G., Miyoshi, A., Langella, P., Azevedo, V., et al. (2008). Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice. Journal of Medical Microbiology, 57, 100–105.

    Article  CAS  Google Scholar 

  38. Ciacma, K., Wieckiewicz, J., Kedracka-Krok, S., Kurtyka, M., Stec, M., Siedlar, M., et al. (2018). Secretion of tumoricidal human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by recombinant Lactococcus lactis: Optimization of in vitro synthesis conditions. Microbial Cell Factories, 17, 177.

    Article  CAS  Google Scholar 

  39. Jacouton, E., Torres Maravilla, E., Boucard, A. S., Pouderous, N., Pessoa Vilela, A. P., Naas, I., et al. (2018). Anti-tumoral effects of recombinant Lactococcus lactis strain secreting IL-17A cytokine. Frontiers in Microbiology, 9, 3355.

    Article  Google Scholar 

  40. Hryniewicki, A. T., Wang, C., Shatsky, R. A., & Coyne, C. J. (2018). Management of immune checkpoint inhibitor toxicities: a review and clinical guideline for emergency physicians. The Journal of Emergency Medicine, 55, 489–502.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for JSPS Fellows, JP201922578. We thank the Research Center for Support of Advanced Science, Shinshu University, for use of their facilities.

Author information

Authors and Affiliations

Authors

Contributions

FN, AM, AU, MT, and SS performed the experiments and analyzed the data; TSa and TO contributed reagents, materials, and/or analytical tools; TSh designed the research project. FN and TSh wrote the paper.

Corresponding author

Correspondence to Takeshi Shimosato.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namai, F., Murakami, A., Ueda, A. et al. Construction of Genetically Modified Lactococcus lactis Producing Anti-human-CTLA-4 Single-Chain Fragment Variable. Mol Biotechnol 62, 572–579 (2020). https://doi.org/10.1007/s12033-020-00274-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00274-8

Keywords

Navigation