Skip to main content
Log in

Transgene Stacking as Effective Tool for Enhanced Disease Resistance in Plants

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Introduction of more than one gene into crop plants simultaneously or sequentially, called transgene stacking, has been a more effective strategy for conferring higher and durable insect and disease resistance in transgenic plants than single-gene technology. Transgenes can be stacked against one or more pathogens or for traits such as herbicide tolerance or anthocyanin pigmentation. Polygenic agronomic traits can be improved by multiple gene transformation. The most widely engineered stacked traits are insect resistance and herbicide tolerance as these traits may lead to lesser use of pesticides, higher yield, and efficient control of weeds. In this review, we summarize transgene stacking of two or more transgenes into crops for different agronomic traits, potential applications of gene stacking, its limitations and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ronald, P. C. (1997). The molecular basis of disease resistance in rice. Plant Molecular Biology,35, 179–186.

    CAS  PubMed  Google Scholar 

  2. Zhang, S., Song, W. Y., Chen, L., Ruan, D., Taylor, N., Ronald, P. C., et al. (1998). Transgenic elite indica rice varieties, resistant to Xanthomonas oryzae pv.oryzae. Molecular Breeding,4, 551–558.

    CAS  Google Scholar 

  3. Mew, T. W., Vera Cruz, C. M., & Medalla, E. S. (1992). Changes in the race frequency of Xanthomonas oryzae pv. oryzae in response to the planting of rice cultivars in the Philippines. Plant Disease,76, 1029–1032.

    Google Scholar 

  4. Douglas, E., & Halpin, C. (2010). Gene stacking. Molecular techniques in crop improvement (2nd ed., pp. 613–629). The Netherlands: Springer.

    Google Scholar 

  5. James, C. (2007). Global status of commercialized biotech/GM crops in 2007. New York: ISAAA.

    Google Scholar 

  6. Takakura, Y., Ito, T., Saito, H., Inoue, T., Komari, T., & Kuwata, S. (2000). Flower predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.). Plant Molecular Biology,42, 883–897.

    CAS  PubMed  Google Scholar 

  7. Kim, J. K., Jang, I. C., Wu, R., Zuo, W. N., Boston, R. S., Lee, Y. H., et al. (2003). Coexpression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Research,12, 475–484.

    CAS  PubMed  Google Scholar 

  8. Jha, S., & Chattoo, B. B. (2009). Transgene stacking and coordinated expression of plant defensins confer fungal resistance in rice. Rice,2, 143–154.

    Google Scholar 

  9. Khan, R. S., Darwish, N. A., Khattak, B., Ntui, V., Kong, K., Shimomae, K., et al. (2014). Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding Chitinase and Wasabi defensin genes. Molecular Biotechnol,56, 814–823.

    CAS  Google Scholar 

  10. James, C. (2013). Global status of commercialized biotech/GM crops: 2013 ISAAA brief no. 46 (p. 315). Ithaca, NY: International Service for the Acquisition of Agri-biotech Applications (ISAAA).

    Google Scholar 

  11. Zhao, J.-Z., et al. (2003). Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nature Biotechnology,21, 1493–1497.

    CAS  PubMed  Google Scholar 

  12. Steffey, K., Gray, M., & Estes, R. (2009). Traits for insect control with transgenic Bt Corn: What, why, and how now and in the future. In The proceedings of the 2009 University of Illinois Corn & Soybean Classics.

  13. Zhao, Q. C., Liu, M. H., Zhang, X. W., Lin, C. Y., Zhang, Q., & Shen, Z. C. (2015). Generation of insect- resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene. Journal of Zhejiang University (Science B),16, 824–831.

    CAS  Google Scholar 

  14. Naqvi, R. Z., Asif, M., Saeed, M., Asad, S., Khatoon, A., Amin, I., et al. (2017). Development of a triple gene Cry1Ac-Cry2Ab-EPSPS construct and its expression in Nicotiana benthamiana for insect resistance and herbicide tolerance in plants. Frontiers in Plant Science,8, 55.

    PubMed  PubMed Central  Google Scholar 

  15. Mehrotra, M., Singh, A. K., Sanyal, I., Altosaar, I., & Amla, D. V. (2011). Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica,182, 87–102.

    CAS  Google Scholar 

  16. Maqbool, S. B., Riazuddin, S., Loc, N. T., Gatehouse, A. M. R., Gatehouse, J. A., & Christou, P. (2001). Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Molecular Breeding,7, 85–93.

    CAS  Google Scholar 

  17. Walawage, S. L., Britton, M. T., Leslie, C. A., & Uratsu, S. L. (2013). Stacking resistance to crown gall and nematodes in walnut rootstocks. BMC Genomics,14, 668. https://doi.org/10.1186/1471-2164-14-668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jo, K. R., Kim, C. J., Kim, S. J., Kim, T. J., Bergervoet-van Deelen, J. E. M., Jongsma, M. A., et al. (2014). Development of late blight resistant potatoes by cisgenic stacking. BMC Biotechnology,14, 1472–6750.

    Google Scholar 

  19. Zhu, S., Li, Y., Vossen, J. H., Visser, R. G. F., & Jacobsen, E. (2012). Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Research,21, 89–99.

    CAS  PubMed  Google Scholar 

  20. Singla-Pareek, S. L., Reddy, M. K., & Sopory, S. K. (2003). Genetic engineering of the glyoxlase pathway in tobacco leads to enhanced sa-linity tolerance. Proceedings of the National Academy of Sciences USA,100(25), 14672–14677.

    CAS  Google Scholar 

  21. Rivero, M., Furman, N., Mencaccia, N., Picca, P., Toum, L., Lentz, E., et al. (2012). Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. Journal of Biotechnology,157, 334–343.

    CAS  PubMed  Google Scholar 

  22. Chakraborti, D., Sarkar, A., Hossain, A., Mondal, H. A., Schuer-mann, D., Hohn, B., et al. (2008). Cre/lox system to develop selectable marker-free transgenic tobacco plants conferring resistance against sap sucking homopteran insect. Plant Cell Reports,27(10), 1623–1633.

    CAS  PubMed  Google Scholar 

  23. Hou, L., Yau, Y. Y., Wei, J., Han, Z., Dong, Z., & Ow, D. W. (2014). An open-source system for in planta gene stacking by Bxb1 and Cre recombinases. Molecular Plant,7, 1756–1765.

    CAS  PubMed  Google Scholar 

  24. Khan, R. S., Nakamura, I., & Mii, M. (2010). Production and selection of marker-free transgenic plants of Petunia hybrida using sitespecific recombination. Biologia Plantarum,54, 265–271.

    CAS  Google Scholar 

  25. Sauer, B. (1987). Functional expression of the Cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Molecular and Cellular Biology,7, 2087–2096.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ntui, V. O., Azadi, P., Thirukkumaran, G., Khan, R. S., Chin, D. P., Nakamura, I., et al. (2011). Increased resistance to fusarium wilt in transgenic tobacco lines co-expressing chitinase and wasabi defensin genes. Plant Pathology,60, 221–231.

    CAS  Google Scholar 

  27. Ebinuma, H., & Komamine, A. (2001). Mat (Multi-Auto-Transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cellular & Developmental Biology-Plant,37, 103–113.

    CAS  Google Scholar 

  28. Khan, R. S., Ntui, V. O., Chin, D. P., Nakamura, I., & Mii, M. (2011). Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker. Plant Cell Reports,30, 587–597.

    CAS  PubMed  Google Scholar 

  29. Ramana Rao, M., Parameswari, C., Sripriya, R., & Veluthambi, K. (2011). Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene. Plant Cell Reports,30, 1241–1252.

    CAS  PubMed  Google Scholar 

  30. Maqbool, S. B., & Christou, P. (1995). Multiple traits of agronomic importance in transgenic indica rice plants: Analysis of transgene integration patterns, expression levels and stability. Molecular Breeding,5, 471–480.

    Google Scholar 

  31. Matzke, A. J., & Matzke, M. A. (1998). Position effects and epigenetic silencing of plant transgenes. Current Opinion in Plant Biology,1, 14–148.

    Google Scholar 

  32. Francois, I. E., De Bolle, M. F., Dwyer, G., Goderis, I. J., Woutors, P. F., Verhaert, P. D., et al. (2002). Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiology,128, 1346–1358.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwon, H. B., Kwon, S. J., & Hwang, E. W. (2004). Genetic engineering of drought resistant potato plants by co-introduction of genes encoding trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase of Zygosaccharomyces rouxii. Korean Journal of Genetics,26, 199–206.

    CAS  Google Scholar 

  34. Ralley, L., Enfissi, E. M., Misawa, N., Schuch, W., Bramley, P. M., & Fraser, P. D. (2004). Metabolic engineering of ketocarotenoid formation in higher plants. The Plant Journal,39, 477–486.

    CAS  PubMed  Google Scholar 

  35. Randall, J., Sutton, D., Ghoshroy, S., Bagga, S., & Kemp, J. D. (2004). Co-ordinate expression of beta- and delta-zeins in transgenic tobacco. Plant Science,167, 367–372.

    CAS  Google Scholar 

  36. Park, S., Kang, K., Kim, Y. S., & Back, K. (2009). Endosperm-specific expression of tyramine N- hydroxycinnamoyltransferase and tyrosine decarboxylase from a single self-processing polypeptide produces high levels of tyramine derivatives in rice seeds. Biotechnology Letters,31, 911–915.

    CAS  PubMed  Google Scholar 

  37. Quilis, J., Lopez-Garcia, B., Meynard, D., Guiderdoni, E., & San Segundo, B. (2014). Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnology Journal,12, 367–377.

    CAS  PubMed  Google Scholar 

  38. Ha, S. H., Liang, Y. S., Jung, H., Ahn, M. J., Suh, S. C., Kweon, S. J., et al. (2010). Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnology Journal,8, 928–938.

    CAS  PubMed  Google Scholar 

  39. Storer, N. P., Thompson, G. D., & Head, G. P. (2012). Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops. GM Crops and Food,3(3), 154–162.

    PubMed  Google Scholar 

  40. International Survey of Herbicide Resistant Weeds. (2017). Herbicide-Resistant Weeds by Site of Action. Retrieved from http://www.weedscience.org/Summary/SOASummary.aspx.

  41. Karmakar, S., Molla, K. A., Das, K., Sarkar, S. N., Datta, S. K., & Datta, K. (2017). Dual gene expression cassette is superior than single gene cassette for enhancing sheath blight tolerance in transgenic rice. Scientific Reports,7, 7900.

    PubMed  PubMed Central  Google Scholar 

  42. Naqvi, S., Farre, G., Sanahuja, G., Capell, T., Zhu, C., & Christou, P. (2009). When more is better: Multigene engineering in plants. Trends in Plant Science,15, 48–56.

    PubMed  Google Scholar 

  43. Ye, X. D., Al Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P., et al. (2000). Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science,287, 303–305.

    CAS  PubMed  Google Scholar 

  44. Tanaka, Y., Brugliera, F., & Chandler, S. (2009). Recent progress of flower colour modification by biotechnology. International Journal of Molecular Sciences,10, 5350–5369.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Collier, R., Thomson, J. G., & Thilmony, R. (2018). A versatile and robust Agrobacterium-based gene stacking system generates high quality transgenic Arabidopsis plants. Plant Journal. https://doi.org/10.1111/tpj.13992.

    Article  PubMed  Google Scholar 

  46. Monsanto. (2009). Monsanto biotechnology trait acreage: Fiscal years 1996 to 2009.

  47. Bakhsh, A., Dinc, T., Hussain, T., Demirel, U., Aasim, M., & Çalışkan, M. E. (2018). Development of transgenic tobacco lines with pyramided insect resistant genes. Turkish Journal of Biology,42, 174–186.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raham Sher Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehryar, K., Khan, R.S., Iqbal, A. et al. Transgene Stacking as Effective Tool for Enhanced Disease Resistance in Plants. Mol Biotechnol 62, 1–7 (2020). https://doi.org/10.1007/s12033-019-00213-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00213-2

Keywords

Navigation