Skip to main content
Log in

A Novel Methanol-Free Platform for Extracellular Expression of rhGM-CSF in Pichia pastoris

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The production of the recombinant proteins under the control of AOX1 promoter is a one of the most common expression systems in the methylotrophic yeast Pichia pastoris which is induced by methanol. The application of this expression platform is restricted by the toxicity and inflammatory nature of methanol, especially in food and pharmaceutical products. Human granulocyte macrophage-colony stimulating factor (hGM-CSF) is an important pharmaceutical protein, playing a crucial role in the proliferation and differentiation of innate immune cells. In this study, a methanol-free expression platform for extracellular expression of hGM-CSF was developed. To attain this goal, a novel constructed expression vector pEP(α)101, carrying the FMD promoter regulating recombinant expression by glycerol derepression was designed. The optimized hGM-CSF gene was subcloned into pEP(α)101 and transformed into P. pastoris. The expression of rhGM-CSF in three different culture media were investigated. Based on the observed heterogeneous glycosylation pattern on SDS-PAGE and western blot, the glycoproteins were deglycosylated to remove carbohydrate units. According to the results, the novel methanol independent PFMD expression platform would be a suitable candidate for driving heterologous gene expression especially for the production of food-grade and therapeutically important recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bot, F. J., Schipper, P., Broeders, L., Delwel, R., Kaushansky, K., & Lowenberg, B. (1990). Interleukin-1 alpha also induces granulocyte-macrophage colony-stimulating factor in immature normal bone marrow cells. Blood, 76, 307–311.

    CAS  PubMed  Google Scholar 

  2. Hamilton, J. A. (2015). GM-CSF as a target in inflammatory/autoimmune disease: Current evidence and future therapeutic potential. Expert Review of Clinical Immunology, 11, 457–465.

    Article  CAS  PubMed  Google Scholar 

  3. Kelso, A., & Metcalf, D. (1990). T lymphocyte-derived colony-stimulating factors. Advances in Immunology, 48, 69–105.

    Article  CAS  PubMed  Google Scholar 

  4. Kita, H., Ohnishi, T., Okubo, Y., Weiler, D., Abrams, J. S., & Gleich, G. J. (1991). Granulocyte/macrophage colony-stimulating factor and interleukin 3 release from human peripheral blood eosinophils and neutrophils. Journal of Experimental Medicine, 174, 745–748.

    Article  CAS  PubMed  Google Scholar 

  5. Plaut, M., Pierce, J. H., Watson, C. J., Hanley-Hyde, J., Nordan, R. P., & Paul, W. E. (1989). Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores. Nature, 339, 64–67.

    Article  CAS  PubMed  Google Scholar 

  6. Pluznik, D. H., Bickel, M., & Mergenhagen, S. E. (1989). B lymphocyte derived hematopoietic growth factors. Immunological Investigations, 18, 103–116.

    Article  CAS  PubMed  Google Scholar 

  7. Rich, I. N. (1986). A role for the macrophage in normal hemopoiesis. I. Functional capacity of bone-marrow-derived macrophages to release hemopoietic growth factors. Experimental Hematology, 14, 738–745.

    CAS  PubMed  Google Scholar 

  8. Shiomi, A., & Usui, T. (2015). Pivotal roles of GM-CSF in autoimmunity and inflammation. Mediators of Inflammation, 2015, 568543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ushach, I., & Zlotnik, A. (2016). Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. Journal of Leukocyte Biology, 100, 481–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhattacharya, P., Budnick, I., Singh, M., Thiruppathi, M., Alharshawi, K., Elshabrawy, H., et al. (2015). Dual role of GM-CSF as a pro-inflammatory and a regulatory cytokine: Implications for immune therapy. Journal of Interferon and Cytokine Research, 35, 585–599.

    Article  CAS  PubMed  Google Scholar 

  11. Clive, K. S., Tyler, J. A., Clifton, G. T., Holmes, J. P., Mittendorf, E. A., Ponniah, S., et al. (2010). Use of GM-CSF as an adjuvant with cancer vaccines: Beneficial or detrimental? Expert review of vaccines, 9(5), 519–525.

    Article  CAS  PubMed  Google Scholar 

  12. Garcia-Carbonero, R., Mayordomo, J. I., Tornamira, M. V., Lopez-Brea, M., Rueda, A., Guillem, V., et al. (2001). Granulocyte colony-stimulating factor in the treatment of high-risk febrile neutropenia: A multicenter randomized trial. Journal of the National Cancer Institute, 93, 31–38.

    Article  CAS  PubMed  Google Scholar 

  13. Smith, T. J., Khatcheressian, J., Lyman, G. H., Ozer, H., Armitage, J. O., Balducci, L., et al. (2006). 2006 update of recommendations for the use of white blood cell growth factors: An evidence-based clinical practice guideline. Journal of Clinical Oncology, 24, 3187–3205.

    Article  CAS  PubMed  Google Scholar 

  14. Westervelt, B. P., & Ley, T. J. (1999). Hydrops fetalis caused by alpha-Thalassemia: An emerging health care problem. Blood, 93, 2143–2148.

    CAS  PubMed  Google Scholar 

  15. Campbell, I. K., Rich, M. J., Bischof, R. J., Dunn, A. R., Grail, D., & Hamilton, J. A. (1998). Protection from collagen-induced arthritis in granulocyte-macrophage colony-stimulating factor-deficient mice. The Journal of Immunology, 161, 3639–3644.

    CAS  PubMed  Google Scholar 

  16. McQualter, J. L., Darwiche, R., Ewing, C., Onuki, M., Kay, T. W., Hamilton, J. A., et al. (2001). Granulocyte macrophage colony-stimulating factor: A new putative therapeutic target in multiple sclerosis. Journal of Experimental Medicine, 194, 873–882.

    Article  CAS  PubMed  Google Scholar 

  17. Sonderegger, I., Iezzi, G., Maier, R., Schmitz, N., Kurrer, M., & Kopf, M. (2008). GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. Journal of Experimental Medicine, 205, 2281–2294.

    Article  CAS  PubMed  Google Scholar 

  18. Walter, M. R., Cook, W. J., Ealick, S. E., Nagabhushan, T. L., Trotta, P. P., & Bugg, C. E. (1992). Three-dimensional structure of recombinant human granulocyte-macrophage colony-stimulating factor. Journal of Molecular Biology, 224, 1075–1085.

    Article  CAS  PubMed  Google Scholar 

  19. Gasmi, N., Lassoued, R., Ayed, A., Treton, B., Chevret, D., Nicaud, J. M., et al. (2012). Production and characterization of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) expressed in the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 96, 89–101.

    Article  CAS  PubMed  Google Scholar 

  20. Shahali, M., Yakhchali, B., Zomorodipour, A., & Seyedena, S. Y. (2005). Expression and secretion of human granulocyte macrophage-colony stimulating factor using Escherichia coli enterotoxin I signal sequence. Journal of Sciences, Islamic Republic of Iran16(4), 327–332.

    CAS  Google Scholar 

  21. Bhatacharya, P., Pandey, G., & Mukherjee, K. J. (2007). Production and purification of recombinant human granulocyte–macrophage colony stimulating factor (GM-CSF) from high cell density cultures of Pichia pastoris. Bioprocess and Biosystems Engineering, 30, 305–312.

    Article  CAS  PubMed  Google Scholar 

  22. Forno, G., Bollati Fogolin, M., Oggero, M., Kratje, R., Etcheverrigaray, M., Conradt, H. S., et al. (2004). N- and O-linked carbohydrates and glycosylation site occupancy in recombinant human granulocyte-macrophage colony-stimulating factor secreted by a Chinese hamster ovary cell line. European Journal of Biochemistry, 271, 907–919.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, J. H., Kim, N. S., Kwon, T. H., Jang, Y. S., & Yang, M. S. (2002). Increased production of human granulocyte-macrophage colony stimulating factor (hGM-CSF) by the addition of stabilizing polymer in plant suspension cultures. Journal of Biotechnology, 96, 205–211.

    Article  CAS  PubMed  Google Scholar 

  24. Ryoo, Z. Y., Kim, M. O., Kim, K. E., Bahk, Y. Y., Lee, J. W., Park, S. H., et al. (2001). Expression of recombinant human granulocyte macrophage-colony stimulating factor (hGM-CSF) in mouse urine. Transgenic Research, 10, 193–200.

    Article  CAS  PubMed  Google Scholar 

  25. Hussein, A. M., Ross, M., Vredenburgh, J., Meisenberg, B., Hars, V., Gilbert, C., et al. (1995). Effects of granulocyte-macrophage colony stimulating factor produced in Chinese hamster ovary cells (regramostim), Escherichia coli (molgramostim) and yeast (sargramostim) on priming peripheral blood progenitor cells for use with autologous bone marrow after high-dose chemotherapy. European Journal of Haematology, 55, 348–356.

    Article  CAS  PubMed  Google Scholar 

  26. Srinivasa Babu, K., Antony, A., Muthukumaran, T., & Meenakshisundaram, S. (2008). Construction of intein-mediated hGMCSF expression vector and its purification in Pichia pastoris. Protein Expression and Purification, 57, 201–205.

    Article  CAS  PubMed  Google Scholar 

  27. Khasa, Y. P., Khushoo, A., Srivastava, L., & Mukherjee, K. J. (2007). Kinetic studies of constitutive human granulocyte-macrophage colony stimulating factor (hGM-CSF) expression in continuous culture of Pichia pastoris. Biotechnology Letters, 29, 1903–1908.

    Article  CAS  PubMed  Google Scholar 

  28. Pal, Y., Khushoo, A., & Mukherjee, K. J. (2006). Process optimization of constitutive human granulocyte-macrophage colony-stimulating factor (hGM-CSF) expression in Pichia pastoris fed-batch culture. Applied Microbiology and Biotechnology, 69, 650–657.

    Article  CAS  PubMed  Google Scholar 

  29. Wu, J. M., Lin, J. C., Chieng, L. L., Lee, C. K., & Hsu, T. A. (2003). Combined use of GAP and AOX1 promoter to enhance the expression of human granulocyte-macrophage colony-stimulating factor in Pichia pastoris. Enzyme and Microbial Technology, 33, 453–459.

    Article  CAS  Google Scholar 

  30. Grinna, L. S., & Tschopp, J. F. (1989). Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast, 5, 107–115.

    Article  CAS  PubMed  Google Scholar 

  31. Mattanovich, D., Branduardi, P., Dato, L., Gasser, B., Sauer, M., & Porro, D. (2012). Recombinant protein production in yeasts. Methods in Molecular Biology, 824, 329–358.

    Article  CAS  PubMed  Google Scholar 

  32. Chang, S. W., Shieh, C. J., Lee, G. C., Akoh, C. C., & Shaw, J. F. (2006). Optimized growth kinetics of Pichia pastoris and recombinant Candida rugosa LIP1 production by RSM. Journal of Molecular Microbiology and Biotechnology, 11, 28–40.

    Article  CAS  PubMed  Google Scholar 

  33. Murray, W. D., Duff, S. J. B., & Lanthier, P. H. (1989). Induction and stability of alcohol oxidase in the methylotrophic yeast Pichia pastoris. Applied Microbiology and Biotechnology, 32, 95–100.

    Article  CAS  Google Scholar 

  34. Macauley-Patrick, S., Fazenda, M. L., McNeil, B., & Harvey, L. M. (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast, 22, 249–270.

    Article  CAS  PubMed  Google Scholar 

  35. Suppi, S., Michelson, T., Viigand, K., & Alamae, T. (2013). Repression vs. activation of MOX, FMD, MPP1 and MAL1 promoters by sugars in Hansenula polymorpha: The outcome depends on cell’s ability to phosphorylate sugar. FEMS Yeast Research, 13, 219–232.

    Article  CAS  PubMed  Google Scholar 

  36. Gellissen, G., & Veenhuis, M. (2001). The methylotrophic yeast Hansenula polymorpha: Its use in fundamental research and as a cell factory. Yeast, 18, i–iii.

    Article  CAS  PubMed  Google Scholar 

  37. Krainer, F. W., Dietzsch, C., Hajek, T., Herwig, C., Spadiut, O., & Glieder, A. (2012). Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial Cell Factories, 11, 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gellissen, G. (2000). Heterologous protein production in methylotrophic yeasts. Applied Microbiology and Biotechnology, 54, 741–750.

    Article  CAS  PubMed  Google Scholar 

  39. Amuel, C., Gellissen, G., Hollenberg, C. P., & Suckow, M. (2000). Analysis of heat shock promoters inHansenula polymorpha: TheTPS1 promoter, a novel element for heterologous gene expression. Biotechnology and Bioprocess Engineering, 5, 247–252.

    Article  CAS  Google Scholar 

  40. Mayer, A. F., Hellmuth, K., Schlieker, H., Lopez-Ulibarri, R., Oertel, S., Dahlems, U., et al. (1999). An expression system matures: A highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnology and Bioengineering, 63, 373–381.

    Article  CAS  PubMed  Google Scholar 

  41. Kruger, N. J. (1994). The Bradford method for protein quantitation. Methods in Molecular Biology, 32, 9–15.

    CAS  PubMed  Google Scholar 

  42. Morelle, W., & Michalski, J. C. (2007). Analysis of protein glycosylation by mass spectrometry. Nature Protocols, 2, 1585–1602.

    Article  CAS  PubMed  Google Scholar 

  43. Tran, A. M., Nguyen, T. T., Nguyen, C. T., Huynh-Thi, X. M., Nguyen, C. T., Trinh, M. T., et al. (2017). Pichia pastoris versus Saccharomyces cerevisiae: A case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor. BMC Research Notes, 10, 148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bretthauer, R. K., & Castellino, F. J. (1999). Glycosylation of Pichia pastoris-derived proteins. Biotechnology and Applied Biochemistry, 30(Pt 3), 193–200.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by University of Tehran (28850/06/05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Barshan-tashnizi or Maryam Shahali.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirvani, R., Yazdanpanah, S., Barshan-tashnizi, M. et al. A Novel Methanol-Free Platform for Extracellular Expression of rhGM-CSF in Pichia pastoris. Mol Biotechnol 61, 521–527 (2019). https://doi.org/10.1007/s12033-019-00182-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00182-6

Keywords

Navigation