Skip to main content
Log in

Production of a Recombinant Dermaseptin Peptide in Nicotiana tabacum Hairy Roots with Enhanced Antimicrobial Activity

  • Original Article
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 12 February 2019

This article has been updated

Abstract

Expression of strong antimicrobial peptides in plants is of great interest to combat a wide range of plant pathogens. To bring the Dermaseptin B1 (DrsB1) peptide to the intimate contact of the plant pathogens cell wall surface, the DrsB1 encoding sequence was fused to the C-terminal part of the two copies of the chitin-binding domain (CBD) of the Avr4 effector protein and used for Agrobacterium rhizogenes-mediated transformation. The expression of the recombinant protein in the tobacco hairy roots (HRs) was confirmed by molecular analysis. Antimicrobial activity analysis of the recombinant protein purified from the transgenic HRs showed that the (CBD)2-DrsB1 recombinant protein had a significant (p < 0.01) antimicrobial effect on the growth of different fungal and bacterial pathogens. The results of this study indicated that the recombinant protein had a higher antifungal activity against chitin-producing Alternaria alternata than Pythium spp. Scanning electron microscopy images demonstrated that the recombinant protein led to fungal hypha deformation, fragmentation, and agglutination of growing hypha, possibly by dissociating fungal cell wall components. In vitro evidences suggest that the expression of the (CBD)2-DrsB1 recombinant protein in plants by generating transgenic lines is a promising approach to produce disease-resistant plants, resistance to chitin-producing pathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 12 February 2019

    The original version of this article unfortunately contained a mistake in the unit “μg/l”. The unit “μg/l” should be corrected to “μg/ml” throughout the paper.

References

  1. Terra, I., Portugal, C., & Becker-Ritt, A. (2015). Plant antimicrobial peptides. The battle against microbial pathogens: Basic science, technological advances and educational programs (pp. 199–207). Spain: Formatex.

    Google Scholar 

  2. Marcos, J. F., Munoz, A., Perez-Paya, E., Misra, S., & Lopez-Garcia, B. (2008). Identification and rational design of novel antimicrobial peptides for plant protection. Annual Review of Phytopathology, 46, 273–301.

    Article  CAS  Google Scholar 

  3. Omardien, S., Brul, S., & Zaat, S. A. (2016). Antimicrobial activity of cationic antimicrobial peptides against gram-positives: Current progress made in understanding the mode of action and the response of bacteria. Frontiers in Cell and Developmental Biology, 4, 111.

    Article  Google Scholar 

  4. Alpizar, E., Dechamp, E., Lapeyre-Montes, F., Guilhaumon, C., Bertrand, B., Jourdan, C., Lashermes, P., & Etienne, H. (2008). Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): Conditions for long-term proliferation, and morphological and molecular characterization. Annals of Botany, 101(7), 929–940.

    Article  CAS  Google Scholar 

  5. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature Biotechnology, 415, 389–395.

    CAS  Google Scholar 

  6. Holaskova, E., Galuszka, P., Frebort, I., & Oz, M. T. (2015). Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnology Advances, 33(6 Pt 2), 1005–1023.

    Article  CAS  Google Scholar 

  7. Nicolas, P., & Ladram, A. (2013) Dermaseptins. In Handbook of biologically active peptides (2nd ed., pp. 350–363). Amsterdam: Elsevier

    Chapter  Google Scholar 

  8. Osusky, M., Osuska, L., Kay, W., & Misra, S. (2005). Genetic modification of potato against microbial diseases: In vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. Theoretical and Applied Genetics, 111(4), 711–722.

    Article  CAS  Google Scholar 

  9. Xu, X., & Lai, R. (2015). The chemistry and biological activities of peptides from amphibian skin secretions. Chemical Reviews, 115(4), 1760–1846.

    Article  CAS  Google Scholar 

  10. Nicolas, P., & Amri, E., C. (2009). The dermaseptin superfamily: A gene-based combinatorial library of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788(8), 1537–1550.

    Article  CAS  Google Scholar 

  11. Galanth, C., Abbassi, F., Lequin, O., Ayala-Sanmartin, J., Ladram, A., Nicolas, P., & Amiche, M. (2009). Mechanism of antibacterial action of dermaseptin B2 interplay between helix-hinge-helix structure and membrane curvature strain. Biochemistry, 48, 313–327.

    Article  CAS  Google Scholar 

  12. Melo, M. N., Ferre, R., & Castanho, M. A. (2009). Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nature Reviews Microbiology, 7(3), 245–250.

    Article  CAS  Google Scholar 

  13. Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3(3), 238–250.

    Article  CAS  Google Scholar 

  14. Findlay, B., Zhanel, G. G., & Schweizer, F. (2010). Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrobial Agents and Chemotherapy, 54(10), 4049–4058.

    Article  CAS  Google Scholar 

  15. Frederiksen, R. F., Paspaliari, D. K., Larsen, T., Storgaard, B. G., Larsen, M. H., Ingmer, H., Palcic, M. M., & Leisner, J. J. (2013). Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology, 159(Pt 5), 833–847.

    Article  CAS  Google Scholar 

  16. Manjeet, K., Purushotham, P., Neeraja, C., & Podile, A. R. (2013). Bacterial chitin binding proteins show differential substrate binding and synergy with chitinases. Microbiological Research, 168(7), 461–468.

    Article  CAS  Google Scholar 

  17. Suetake, T., Tsuda, S., Kawabata, S., Miura, K., Iwanaga, S., Hikichi, K., Nitta, K., & Kawano, K. (2000). Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. Journal of Biological Chemistry, 275(24), 17929–17932.

    Article  CAS  Google Scholar 

  18. van den Burg, H. A., Harrison, S. J., Joosten, M. H., Vervoort, J., & de Wit, P. J. (2006). Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Molecular Plant-Microbe Interactions, 19(12), 1420–1430.

    Article  Google Scholar 

  19. Li, C., Blencke, H. M., Paulsen, V., Haug, T., & Stensvag, K. (2010). Powerful workhorses for antimicrobial peptide expression and characterization. Bioengineered Bugs, 1(3), 217–220.

    Article  Google Scholar 

  20. Kuo, Y.-C., Tan, C.-C., Ku, J.-T., Hsu, W.-C., Su, S.-C., Lu, C.-A., & Huang, L.-F. (2013). Improving pharmaceutical protein production in Oryza sativa. International Journal of Molecular Sciences, 14(5), 8719–8739.

    Article  Google Scholar 

  21. Chahardoli, M., Fazeli, A., & Ghabooli, M. (2018). Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiology and Biochemistry, 123, 414–421.

    Article  CAS  Google Scholar 

  22. Aleinein, R., Schäfer, H., & Wink, M. (2015). Rhizosecretion of the recombinant antimicrobial peptide ranalexin from transgenic tobacco hairy roots. RRJBS Phytopathol Gene Diseas, 1, 45–55.

    Google Scholar 

  23. Sharifi, S., Sattari, T. N., Zebarjadi, A., Majd, A., & Ghasempour, H. (2014). The influence of Agrobacterium rhizogenes on induction of hairy roots and ss-carboline alkaloids production in Tribulus terrestris L. Physiology and Molecular Biology of Plants, 20(1), 69–80.

    Article  CAS  Google Scholar 

  24. Moghadam, A., Niazi, A., Afsharifar, A., & Taghavi, S. M. (2016). Expression of a recombinant anti-HIV and anti-tumor protein, MAP30, in Nicotiana tobacum hairy roots: A pH-stable and thermophilic antimicrobial protein. PLoS ONE, 11(7), e0159653.

    Article  Google Scholar 

  25. Carlín, A. P., Tafoya, F., Alpuche Solís, A. G., & Pérez-Molphe-Balch, E. (2015). Effects of different culture media and conditions on biomass production of hairy root cultures in six Mexican cactus species. In Vitro Cellular & Developmental Biology-Plant, 51(3), 332–339.

    Article  Google Scholar 

  26. Fischer, R., Stoger, E., Schillberg, S., Christou, P., & Twyman, R. M. (2004). Plant-based production of biopharmaceuticals. Current Opinion in Plant Biology, 7(2), 152–158.

    Article  CAS  Google Scholar 

  27. Ron, M., Kajala, K., Pauluzzi, G., Wang, D., Reynoso, M. A., Zumstein, K., Garcha, J., Winte, S., Masson, H., & Inagaki, S. (2014). Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiology, 166(2), 455–469.

    Article  CAS  Google Scholar 

  28. Zhou, M.-L., Zhu, X.-M., Shao, J.-R., Tang, Y.-X., & Wu, Y.-M. (2011). Production and metabolic engineering of bioactive substances in plant hairy root culture. Applied Microbiology and Biotechnology, 90(4), 1229–1239.

    Article  CAS  Google Scholar 

  29. Skosyrev, V. S., Rudenko, N. V., Yakhnin, A. V., Zagranichny, V. E., Popova, L. I., Zakharov, M. V., & Gorokhovatsky, A. Y., & V., L. M. (2003). EGFP as a fusion partner for the expression and organic extraction of small polypeptides. Protein Expression and Purification, 27, 55–62.

    Article  CAS  Google Scholar 

  30. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio agsays with tohaoco tissue cultures. Physiologia Plantarum, 15, 26.

    Article  Google Scholar 

  31. Joosten, M., Vogelsang, R., Cozijnsen, T. J., Verberne, M. C., & De Wit, P. (1997). The biotrophic fungus Cladosporium fulvum circumvents Cf-4-mediated resistance by producing unstable AVR4 elicitors. The Plant Cell, 9(3), 367–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sulson, J. E., & Waterston, R. (1998). Genome sequence of the nematode C. elegans: A platform for investigating biology. Science, 282(5396), 2012–2018.

    Article  Google Scholar 

  33. Yevtushenko, D. P., & Misra, S. (2007). Comparison of pathogen-induced expression and efficacy of two amphibian antimicrobial peptides, MsrA2 and temporin A, for engineering wide-spectrum disease resistance in tobacco. Plant Biotechnology Journal, 5(6), 720–734.

    Article  CAS  Google Scholar 

  34. Doyle, J., & Doyle, J. (1987). CTAB DNA extraction in plants. Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  35. Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11(2), 113–116.

    Article  CAS  Google Scholar 

  36. Nicot, N., Hausman, J.-F., Hoffmann, L., & Evers, D. (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 56(421), 2907–2914.

    Article  CAS  Google Scholar 

  37. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  Google Scholar 

  38. Che, Y. Z., Li, Y. R., Zou, H. S., Zou, L. F., Zhang, B., & Chen, G. Y. (2011). A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin. Microbial Biotechnology, 4(6), 777–793.

    Article  Google Scholar 

  39. Roberts, W. K., & Selitrennikoff, C. P. (1986). Isolation and partial characterization of two antifungal proteins from barley. Biochimica et Biophysica Acta (BBA)-General Subjects, 880(2–3), 161–170.

    Article  CAS  Google Scholar 

  40. Feng, W., & Zheng, X. (2007). Essential oils to control Alternaria alternata in vitro and in vivo. Food Control, 18(9), 1126–1130.

    Article  CAS  Google Scholar 

  41. Mor, A., & Nicolas, P. (1994). Isolation and structure of novel defensive peptides from frog skin. European Journal of Biochemistry, 219(1-2), 145–154.

    Article  CAS  Google Scholar 

  42. Mor, A., Amiche, M., & Nicolas, P. (1994). Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: Relationship with adenoregulin. Biochemistry, 33(21), 6642–6650.

    Article  CAS  Google Scholar 

  43. Strahilevitz, J., Mor, A., Nicolas, P., & Shai, Y. (1994). Spectrum of antimicrobial activity and assembly of dermaseptin-b and its precursor form in phospholipid membranes. Biochemistry, 33(36), 10951–10960.

    Article  CAS  Google Scholar 

  44. Gaume, A., Komarnytsky, S., Borisjuk, N., & Raskin, I. (2003). Rhizosecretion of recombinant proteins from plant hairy roots. Plant Cell Reports, 21(12), 1188–1193.

    Article  CAS  Google Scholar 

  45. Osusky, M., Zhou, G., Osuska, L., Hancock, R. E., Kay, W. W., & Misra, S. (2000). Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature Biotechnology, 18(11), 1162.

    Article  CAS  Google Scholar 

  46. Osusky, M., Osuska, L., Hancock, R. E., Kay, W. W., & Misra, S. (2004). Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Research, 13(2), 181–190.

    Article  CAS  Google Scholar 

  47. Jashni, M. K., Dols, I. H., Iida, Y., Boeren, S., Beenen, H. G., Mehrabi, R., Collemare, J., & de Wit, P. J. (2015). Synergistic action of a metalloprotease and a serine protease from Fusarium oxysporum f. sp. lycopersici cleaves chitin-binding tomato chitinases, reduces their antifungal activity, and enhances fungal virulence. Molecular Plant-Microbe Interactions, 28(9), 996–1008.

    Article  CAS  Google Scholar 

  48. Firouzabadi, F. N., Kok-Jacon, G. A., Vincken, J.-P., Ji, Q., Suurs, L. C., & Visser, R. G. (2007). Fusion proteins comprising the catalytic domain of mutansucrase and a starch-binding domain can alter the morphology of amylose-free potato starch granules during biosynthesis. Transgenic Research, 16(5), 645–656.

    Article  Google Scholar 

  49. Nazarian-Firouzabadi, F., Trindade, L. M., & Visser, R. G. (2012). Production of small starch granules by expression of a tandem-repeat of a family 20 starch-binding domain (SBD3-SBD5) in an amylose-free potato genetic background. Functional Plant Biology, 39(2), 146–155.

    Article  CAS  Google Scholar 

  50. Guillen, D., Santiago, M., Linares, L., Perez, R., Morlon, J., Ruiz, B., Sanchez, S., & Rodriguez-Sanoja, R. (2007). Alpha-amylase starch binding domains: Cooperative effects of binding to starch granules of multiple tandemly arranged domains. Applied and Environmental Microbiology, 73(12), 3833–3837.

    Article  CAS  Google Scholar 

  51. Reddy, K., Yedery, R., & Aranha, C. (2004). Antimicrobial peptides: Premises and promises. International Journal of Antimicrobial Agents, 24(6), 536–547.

    Article  CAS  Google Scholar 

  52. Yevtushenko, D. P., & Misra, S. (2012) Transgenic expression of antimicrobial peptides in plants: Strategies for enhanced disease resistance, improved productivity, and production of therapeutics. In ACS Symposium Series, 1095, pp. 445–458.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Nazarian-Firouzabadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 234 KB)

Supplementary material 2 (PDF 195 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, M.V., Nazarian-Firouzabadi, F., Ismaili, A. et al. Production of a Recombinant Dermaseptin Peptide in Nicotiana tabacum Hairy Roots with Enhanced Antimicrobial Activity. Mol Biotechnol 61, 241–252 (2019). https://doi.org/10.1007/s12033-019-00153-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00153-x

Keywords

Navigation