Skip to main content
Log in

Molecular and Functional Diversity of RNA Editing in Plant Mitochondria

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

RNA editing is a fundamental biochemical process relating to the modification of nucleotides in messenger RNAs of functional genes in cells. RNA editing leads to re-establishment of conserved amino acid residues for functional proteins in nuclei, chloroplasts, and mitochondria. Identification of RNA editing factors that contributes to target site recognition increases our understanding of RNA editing mechanisms. Significant progress has been made in recent years in RNA editing studies for both animal and plant cells. RNA editing in nuclei and mitochondria of animal cells and in chloroplast of plant cells has been extensively documented and reviewed. RNA editing has been also extensively documented on plant mitochondria. However, functional diversity of RNA editing factors in plant mitochondria is not overviewed. Here, we review the biological significance of RNA editing, recent progress on the molecular mechanisms of RNA editing process, and function diversity of editing factors in plant mitochondrial research. We will focus on: (1) pentatricopeptide repeat proteins in Arabidopsis and in crop plants; (2) the progress of RNA editing process in plant mitochondria; (3) RNA editing-related RNA splicing; (4) RNA editing associated flower development; (5) RNA editing modulated male sterile; (6) RNA editing-regulated cell signaling; and (7) RNA editing involving abiotic stress. Advances described in this review will be valuable in expanding our understanding in RNA editing. The diverse functions of RNA editing in plant mitochondria will shed light on the investigation of molecular mechanisms that underlies plant development and abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahlert, D., Piepenburg, K., Kudla, J., & Bock, R. (2006). Evolutionary origin of a plant mitochondrial group II intron from a reverse transcriptase/maturase-encoding ancestor. Journal of Plant Research, 119, 363–371.

    PubMed  CAS  Google Scholar 

  2. Andres-Colas, N., Zhu, Q., Takenaka, M., De Rybel, B., Weijers, D., & Van Der Straeten, D. (2017). Multiple PPR protein interactions are involved in the RNA editing system in Arabidopsis mitochondria and plastids. Proceedings of the National Academy of Sciences of the United States of America, 114, 8883–8888.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Aubourg, S., Boudet, N., Kreis, M., & Lecharny, A. (2000). In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants. Plant Molecular Biology, 42, 603–613.

    PubMed  CAS  Google Scholar 

  4. Barkan, A. (2011). Studying the structure and processing of chloroplast transcripts. Methods in Molecular Biology, 774, 183–197.

    PubMed  CAS  Google Scholar 

  5. Barkan, A., & Goldschmidt-Clermont, M. (2000). Participation of nuclear genes in chloroplast gene expression. Biochimie, 82, 559–572.

    PubMed  CAS  Google Scholar 

  6. Barkan, A., Rojas, M., Fujii, S., Yap, A., Chong, Y. S., Bond, C. S., et al. (2012). A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genetics, 8(8), e1002910. https://doi.org/10.1371/journal.pgen.1002910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bentolila, S., Babina, A. M., Germain, A., & Hanson, M. R. (2013). Quantitative trait locus mapping identifies REME2, a PPR-DYW protein required for editing of specific C targets in Arabidopsis mitochondria. RNA Biology, 10, 1520–1525.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Bentolila, S., Oh, J., Hanson, M. R., & Bukowski, R. (2013). Comprehensive high-resolution analysis of the role of an Arabidopsis gene family in RNA editing. PLoS Genetics, 9, e1003584.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Binder, S., Marchfelder, A., & Brennicke, A. (1996). Regulation of gene expression in plant mitochondria. Plant Molecular Biology, 32, 303–314.

    PubMed  CAS  Google Scholar 

  10. Blanc, V., Litvak, S., & Araya, A. (1995). RNA editing in wheat mitochondria proceeds by a deamination mechanism. FEBS Letters, 373, 56–60.

    PubMed  CAS  Google Scholar 

  11. Blanc, V., Jordana, X., Litvak, S., & Araya, A. (1996). Control of gene expression by base deamination: The case of RNA editing in wheat mitochondria. Biochimie, 78, 511–517.

    PubMed  CAS  Google Scholar 

  12. Blum, B., Bakalara, N., & Simpson, L. (1990). A model for RNA editing in kinetoplastid mitochondria: ‘Guide’ RNA molecules transcribed from maxicircle DNA provide the edited information. Cell, 60, 189–198.

    PubMed  CAS  Google Scholar 

  13. Bock, R. (2000). Sense from nonsense: How the genetic information of chloroplasts is altered by RNA editing. Biochimie, 82, 549–557.

    PubMed  CAS  Google Scholar 

  14. Bock, R., Hagemann, R., Kossel, H., & Kudla, J. (1993). Tissue- and stage-specific modulation of RNA editing of the psbF and psbL transcript from spinach plastids—A new regulatory mechanism? Molecular & General Genetics, 240, 238–244.

    CAS  Google Scholar 

  15. Bolle, N., & Kempken, F. (2006). Mono- and dicotyledonous plant-specific RNA editing sites are correctly edited in both in organello systems. FEBS Letters, 580, 4443–4448.

    PubMed  CAS  Google Scholar 

  16. Bonavita, S., & Regina, T. M. (2016). The evolutionary conservation of rps3 introns and rps19-rps3-rpl16 gene cluster in Adiantum capillus-veneris mitochondria. Current Genetics, 62, 173–184.

    PubMed  CAS  Google Scholar 

  17. Brennicke, A., Marchfelder, A., & Binder, S. (1999). RNA editing. FEMS Microbiology Reviews, 23, 297–316.

    PubMed  CAS  Google Scholar 

  18. Calixte, S., & Bonen, L. (2008). Developmentally-specific transcripts from the ccmFN-rps1 locus in wheat mitochondria. Molecular Genetics and Genomics, 280, 419–426.

    PubMed  CAS  Google Scholar 

  19. Carrillo, C., & Bonen, L. (1997). RNA editing status of nad7 intron domains in wheat mitochondria. Nucleic Acids Research, 25, 403–409.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Castandet, B., Choury, D., Begu, D., Jordana, X., & Araya, A. (2010). Intron RNA editing is essential for splicing in plant mitochondria. Nucleic Acids Research, 38, 7112–7121.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Chakraborty, A., Mitra, J., Bhattacharyya, J., Pradhan, S., Sikdar, N., Das, S., et al. (2015). Transgenic expression of an unedited mitochondrial orfB gene product from wild abortive (WA) cytoplasm of rice (Oryza sativa L.) generates male sterility in fertile rice lines. Planta, 241, 1463–1479.

    PubMed  CAS  Google Scholar 

  22. Chen, T. C., Liu, Y. C., Wang, X., Wu, C. H., Huang, C. H., & Chang, C. C. (2017). Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp. formosana. Botanical Studies, 58, 38.

    PubMed  PubMed Central  Google Scholar 

  23. Chotewutmontri, P., & Barkan, A. (2016). Dynamics of chloroplast translation during chloroplast differentiation in maize. PLoS Genetics, 12, e1006106.

    PubMed  PubMed Central  Google Scholar 

  24. Choury, D., Farre, J., Jordana, X., & Araya, A. (2004). Different patterns in the recognition of editing sites in plant mitochondria. Nucleic Acids Research, 32, 6397–6406. https://doi.org/10.1093/nar/gkh969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Das, S., Sen, S., Chakraborty, A., Chakraborti, P., Maiti, M. K., Basu, A., et al. (2010). An unedited 1.1 kb mitochondrial orfB gene transcript in the wild abortive cytoplasmic male sterility (WA-CMS) system of Oryza sativa L. subsp. indica. BMC Plant Biology, 10, 39.

    PubMed  PubMed Central  Google Scholar 

  26. de Longevialle, A. F., Meyer, E. H., Andres, C., Taylor, N. L., Lurin, C., Millar, A. H., et al. (2007). The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 Intron 1 in Arabidopsis thaliana. The Plant Cell, 19, 3256–3265.

    PubMed  PubMed Central  Google Scholar 

  27. Dietrich, A., Small, I., Cosset, A., Weil, J. H., & Marechal-Drouard, L. (1996). Editing and import: Strategies for providing plant mitochondria with a complete set of functional transfer RNAs. Biochimie, 78, 518–529.

    PubMed  CAS  Google Scholar 

  28. Du, L., Zhang, J., Qu, S., Zhao, Y., Su, B., Lv, X., et al. (2017). The pentratricopeptide repeat protein pigment-defective Mutant2 is involved in the regulation of chloroplast development and chloroplast gene expression in Arabidopsis. Plant & Cell Physiology, 58, 747–759.

    CAS  Google Scholar 

  29. Farre, J. C., & Araya, A. (2001). Gene expression in isolated plant mitochondria: High fidelity of transcription, splicing and editing of a transgene product in electroporated organelles. Nucleic Acids Research, 29, 2484–2491.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Farre, J.-C., Leon, G., Jordana, X., & Araya, A. (2001). Cis recognition elements in plant mitochondrion RNA editing. Molecular and Cellular Biology, 21, 6731–6737.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Georg, J., Honsel, A., Voss, B., Rennenberg, H., & Hess, W. R. (2010). A long antisense RNA in plant chloroplasts. The New Phytologist, 186, 615–622.

    PubMed  CAS  Google Scholar 

  32. Gualberto, J. M., Lamattina, L., Bonnard, G., Weil, J. H., & Grienenberger, J. M. (1989). RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature, 341, 660–662.

    PubMed  CAS  Google Scholar 

  33. Hackett, J. B., Shi, X., Kobylarz, A. T., Lucas, M. K., Wessendorf, R. L., Hines, K. M., et al. (2017). An organelle RNA recognition motif protein is required for photosystem II subunit psbF transcript editing. Plant Physiology, 173, 2278–2293.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Hajrah, N. H., Obaid, A. Y., Atef, A., Ramadan, A. M., Arasappan, D., Nelson, C. A., et al. (2017). Transcriptomic analysis of salt stress responsive genes in Rhazya stricta. PLoS ONE, 12, e0177589.

    PubMed  PubMed Central  Google Scholar 

  35. Handa, H., Kubo, N., & Kadowaki, K. (1998). Genes for the ribosomal S4 protein encoded in higher plant mitochondria are transcribed, edited, and translated. Molecular & General Genetics, 258, 199–207.

    CAS  Google Scholar 

  36. Hartel, B., Zehrmann, A., Verbitskiy, D., & Takenaka, M. (2013). The longest mitochondrial RNA editing PPR protein MEF12 in Arabidopsis thaliana requires the full-length E domain. RNA Biology, 10, 1543–1548.

    PubMed  PubMed Central  Google Scholar 

  37. Hayes, M. L., Dang, K. N., Diaz, M. F., & Mulligan, R. M. (2015). A conserved glutamate residue in the C-terminal deaminase domain of pentatricopeptide repeat proteins is required for RNA editing activity. The Journal of Biological Chemistry, 290, 10136–10142.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Hepburn, N. J., Schmidt, D. W., & Mower, J. P. (2012). Loss of two introns from the Magnolia tripetala mitochondrial cox2 gene implicates horizontal gene transfer and gene conversion as a novel mechanism of intron loss. Molecular Biology and Evolution, 29, 3111–3120.

    PubMed  CAS  Google Scholar 

  39. Hernould, M., Suharsono, S., Zabaleta, E., Carde, J. P., Litvak, S., Araya, A., et al. (1998). Impairment of tapetum and mitochondria in engineered male-sterile tobacco plants. Plant Molecular Biology, 36, 499–508.

    PubMed  CAS  Google Scholar 

  40. Hinrichsen, I., Bolle, N., Paun, L., & Kempken, F. (2009). RNA processing in plant mitochondria is independent of transcription. Plant Molecular Biology, 70, 663–668.

    PubMed  CAS  Google Scholar 

  41. Hirose, T., Kusumegi, T., Tsudzuki, T., & Sugiura, M. (1999). RNA editing sites in tobacco chloroplast transcripts: Editing as a possible regulator of chloroplast RNA polymerase activity. Molecular & General Genetics, 262, 462–467.

    CAS  Google Scholar 

  42. Hirose, T., & Sugiura, M. (2001). Involvement of a site-specific transacting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: Development of a chloroplast in vitro RNA editing system. EMBO Journal, 20, 1144–1152.

    PubMed  CAS  Google Scholar 

  43. Howad, W., Tang, H. V., Pring, D. R., & Kempken, F. (1999). Nuclear genes from Tx CMS maintainer lines are unable to maintain atp6 RNA editing in any anther cell-type in the Sorghum bicolor A3 cytoplasm. Current Genetics, 36, 62–68.

    PubMed  CAS  Google Scholar 

  44. Ichinose, M., & Sugita, M. (2017). RNA editing and its molecular mechanism in plant organelles. Genes, 8, 5. https://doi.org/10.3390/genes8010005.

    Article  CAS  Google Scholar 

  45. Knie, N., Grewe, F., Fischer, S., & Knoop, V. (2016). Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns—A monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles. BMC Evolutionary Biology, 16, 134. https://doi.org/10.1186/s12862-016-0707-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Knoop, V. (2004). The mitochondrial DNA of land plants: Peculiarities in phylogenetic perspective. Current Genetics, 46, 123–139.

    PubMed  CAS  Google Scholar 

  47. Knoop, V., & Rüdinger, M. (2010). DYW-type PPR proteins in a heterolobosean protist: Plant RNA editing factors involved in an ancient horizontal gene transfer? FEBS Letters, 584, 4287–4291.

    PubMed  CAS  Google Scholar 

  48. Kotera, E., Tasaka, M., & Shikanai, T. (2005). A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature, 433, 326–330.

    PubMed  CAS  Google Scholar 

  49. Kurihara-Yonemoto, S., & Handa, H. (2001). Low temperature affects the processing pattern and RNA editing status of the mitochondrial cox2 transcripts in wheat. Current Genetics, 40, 203–208.

    PubMed  CAS  Google Scholar 

  50. Kurihara-Yonemoto, S., & Kubo, T. (2010). Increased accumulation of intron-containing transcripts in rice mitochondria caused by low temperature: Is cold-sensitive RNA editing implicated? Current Genetics, 56, 529–541.

    PubMed  CAS  Google Scholar 

  51. Leu, K. C., Hsieh, M. H., Wang, H. J., Hsieh, H. L., & Jauh, G. Y. (2016). Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing. RNA Biology, 13, 593–604.

    PubMed  PubMed Central  Google Scholar 

  52. Li, X. J., Zhang, Y. F., Hou, M., Sun, F., Shen, Y., Xiu, Z. H., et al. (2014). Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). The Plant Journal: For Cell and Molecular Biology, 79, 797–809.

    CAS  Google Scholar 

  53. Liao, J. C., Hsieh, W. Y., Tseng, C. C., & Hsieh, M. H. (2016). Dysfunctional chloroplasts up-regulate the expression of mitochondrial genes in Arabidopsis seedlings. Photosynthesis Research, 127, 151–159.

    PubMed  CAS  Google Scholar 

  54. Liu, S. L., & Adams, K. (2008). Molecular adaptation and expression evolution following duplication of genes for organellar ribosomal protein S13 in rosids. BMC Evolutionary Biology, 8, 25.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Maier, U. G., Bozarth, A., Funk, H. T., Zauner, S., Rensing, S. A., Schmitz-Linneweber, C., et al. (2008). Complex chloroplast RNA metabolism: Just debugging the genetic programme? BMC Biology, 6, 36.

    PubMed  PubMed Central  Google Scholar 

  56. Meng, Y., Chen, D., Jin, Y., Mao, C., Wu, P., & Chen, M. (2010). RNA editing of nuclear transcripts in Arabidopsis thaliana. BMC Genomics, 11(Suppl 4), S12.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Miyamoto, T., Obokata, J., & Sugiura, M. (2002). Recognition of RNA editing sites is directed by unique proteins in chloroplasts: Biochemical identification of cis-acting elements and trans-acting factors involved in RNA editing in tobacco and pea chloroplasts. Molecular and Cellular Biology, 22, 6726–6734.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Moller, I. M. (2016). What is hot in plant mitochondria? Physiologia Plantarum, 157, 256–263.

    PubMed  CAS  Google Scholar 

  59. Moneger, F., Smart, C. J., & Leaver, C. J. (1994). Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. The EMBO Journal, 13, 8–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Morawala-Patell, V., Gualberto, J. M., Lamattina, L., Grienenberger, J. M., & Bonnard, G. (1998). Cis- and trans-splicing and RNA editing are required for the expression of nad2 in wheat mitochondria. Molecular & General Genetics, 258, 503–511.

    CAS  Google Scholar 

  61. Mueller, S. J., Hoernstein, S. N., & Reski, R. (2017). The mitochondrial proteome of the moss Physcomitrella patens. Mitochondrion, 33, 38–44.

    PubMed  CAS  Google Scholar 

  62. Murayama, M., Hayashi, S., Nishimura, N., Ishide, M., Kobayashi, K., Yagi, Y., et al. (2012). Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing. Journal of Experimental Botany, 63, 5301–5310.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Nakamura, T., & Sugita, M. (2008). A conserved DYW domain of the pentatricopeptide repeat protein possesses a novel endoribonuclease activity. FEBS Letters, 582, 4163–4168.

    PubMed  CAS  Google Scholar 

  64. Nakamura, T., Yagi, Y., & Kobayashi, K. (2012). Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants. Plant & Cell Physiology, 53, 1171–1179.

    CAS  Google Scholar 

  65. Nawaz, G., & Kang, H. (2017). Chloroplast- or mitochondria-targeted DEAD-box RNA helicases play essential roles in organellar RNA metabolism and abiotic stress responses. Frontiers in Plant Science, 8, 871.

    PubMed  PubMed Central  Google Scholar 

  66. Ogihara, Y., Kurihara, Y., Futami, K., Tsuji, K., & Murai, K. (1999). Photoperiod-sensitive cytoplasmic male sterility in wheat: Nuclear-mitochondrial incompatibility results in differential processing of the mitochondrial orf25 gene. Current Genetics, 36, 354–362.

    PubMed  CAS  Google Scholar 

  67. Qi, W., Tian, Z., Lu, L., Chen, X., Chen, X., Zhang, W., et al. (2017). Editing of mitochondrial transcripts nad3 and cox2 by Dek10 is essential for mitochondrial function and maize plant development. Genetics, 205, 1489–1501.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Qi, W., Yang, Y., Feng, X., Zhang, M., & Song, R. (2017). Mitochondrial function and maize kernel development requires Dek2, a pentatricopeptide repeat protein involved in nad1 mRNA splicing. Genetics, 205, 239–249.

    PubMed  CAS  Google Scholar 

  69. Schmitz-Linneweber, C., & Small, I. (2008). Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends in Plant Science, 13, 663–670.

    PubMed  CAS  Google Scholar 

  70. Shi, X., Germain, A., Hanson, M. R., & Bentolila, S. (2016). RNA recognition motif-containing protein ORRM4 broadly affects mitochondrial RNA editing and impacts plant development and flowering. Plant Physiology, 170, 294–309.

    PubMed  CAS  Google Scholar 

  71. Shikanai, T. (2015). RNA editing in plants: Machinery and flexibility of site recognition. Biochimica et Biophysica Acta, 1847, 779–785.

    PubMed  CAS  Google Scholar 

  72. Shikanai, T., & Fujii, S. (2013). Function of PPR proteins in plastid gene expression. RNA Biology, 10, 1446–1456.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Silva, S. R., Alvarenga, D. O., Aranguren, Y., Penha, H. A., Fernandes, C. C., Pinheiro, D. G., et al. (2017). The mitochondrial genome of the terrestrial carnivorous plant Utricularia reniformis (Lentibulariaceae): Structure, comparative analysis and evolutionary landmarks. PLoS ONE, 12, e0180484.

    PubMed  PubMed Central  Google Scholar 

  74. Small, I. D., & Peeters, N. (2000). The PPR motif—A TPR-related motif prevalent in plant organellar proteins. Trends in Biochemical Sciences, 25, 46–47.

    PubMed  CAS  Google Scholar 

  75. Sosso, D., Mbelo, S., Vernoud, V., Gendrot, G., Dedieu, A., Chambrier, P., et al. (2012). PPR2263, a DYW-subgroup pentatricopeptide repeat protein, is required for mitochondrial nad5 and cob transcript editing, mitochondrion biogenesis, and maize growth. The Plant Cell, 24, 676–691.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Sugita, M., Ichinose, M., Ide, M., & Sugita, C. (2013). Architecture of the PPR gene family in the moss Physcomitrella patens. RNA Biology, 10, 1439–1445.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Sugita, M., & Sugiura, M. (1996). Regulation of gene expression in chloroplasts of higher plants. Plant Molecular Biology, 32, 315–326.

    PubMed  CAS  Google Scholar 

  78. Sun, T., Bentolila, S., & Hanson, M. (2016). The unexpected diversity of plant organelle RNA editosomes. Trends in Plant Science, 21, 962–973.

    PubMed  CAS  Google Scholar 

  79. Sun, F., Wang, X., Bonnard, G., Shen, Y., Xiu, Z., Li, X., et al. (2015). Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. The Plant Journal: For Cell and Molecular Biology, 84, 283–295.

    CAS  Google Scholar 

  80. Sutton, C. A., Zoubenko, O. V., Hanson, M. R., & Maliga, P. (1995). A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not edited. Molecular and Cellular Biology, 15, 1377–1381.

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Takenaka, M. (2010). MEF9, an E-subclass pentatricopeptide repeat protein, is required for an RNA editing event in the nad7 transcript in mitochondria of Arabidopsis. Plant Physiology, 152, 939–947.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Takenaka, M., Neuwirt, J., & Brennicke, A. (2004). Complex cis-elements determine an RNA editing site in pea mitochondria. Nucleic Acids Research, 32(14), 4137–4144.

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Takenaka, M., Verbitskiy, D., van der Merwe, J. A., Zehrmann, A., & Brennicke, A. (2008). The process of RNA editing in plant mitochondria. Mitochondrion, 8, 35–46.

    PubMed  CAS  Google Scholar 

  84. Takenaka, M., Zehrmann, A., Brennicke, A., & Graichen, K. (2013). Improved computational target site prediction for pentatricopeptide repeat RNA editing factors. PLoS ONE, 8, e65343.

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Tang, J., Kobayashi, K., Suzuki, M., Matsumoto, S., & Muranaka, T. (2010). The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing. The Plant Journal: For Cell and Molecular Biology, 61, 456–466.

    CAS  Google Scholar 

  86. Tasaki, E., Hattori, M., & Sugita, M. (2010). The moss pentatricopeptide repeat protein with a DYW domain is responsible for RNA editing of mitochondrial ccmFc transcript. The Plant Journal: For Cell and Molecular Biology, 62, 560–570.

    CAS  Google Scholar 

  87. Tillich, M., Hardel, S. L., Kupsch, C., Armbruster, U., Delannoy, E., Gualberto, J. M., et al. (2009). Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 106, 6002–6007.

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Tillich, M., Lehwark, P., Morton, B. R., & Maier, U. G. (2006). The evolution of chloroplast RNA editing. Molecular Biology and Evolution, 23, 1912–1921.

    PubMed  CAS  Google Scholar 

  89. Toda, T., Fujii, S., Noguchi, K., Kazama, T., & Toriyama, K. (2012). Rice MPR25 encodes a pentatricopeptide repeat protein and is essential for RNA editing of nad5 transcripts in mitochondria. The Plant Journal: For Cell and Molecular Biology, 72, 450–460.

    CAS  Google Scholar 

  90. Tseng, C. C., Sung, T. Y., Li, Y. C., Hsu, S. J., Lin, C. L., & Hsieh, M. H. (2010). Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis vanilla cream1 mutant. Plant Molecular Biology, 73, 309–323.

    PubMed  CAS  Google Scholar 

  91. Uchida, M., Ohtani, S., Ichinose, M., Sugita, C., & Sugita, M. (2011). The PPR-DYW proteins are required for RNA editing of rps14, cox1 and nad5 transcripts in Physcomitrella patens mitochondria. FEBS Letters, 585, 2367–2371.

    PubMed  CAS  Google Scholar 

  92. Valkov, V. T., Scotti, N., Kahlau, S., Maclean, D., Grillo, S., Gray, J. C., et al. (2009). Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: Transcriptional and posttranscriptional control. Plant Physiology, 150, 2030–2044.

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Verbitskiy, D., Zehrmann, A., van der Merwe, J. A., Brennicke, A., & Takenaka, M. (2010). The PPR protein encoded by the LOVASTATIN INSENSITIVE 1 gene is involved in RNA editing at three sites in mitochondria of Arabidopsis thaliana. The Plant Journal: For Cell and Molecular biology, 61, 446–455.

    CAS  Google Scholar 

  94. Wagoner, J. A., Sun, T., Lin, L., & Hanson, M. R. (2015). Cytidine deaminase motifs within the DYW domain of two pentatricopeptide repeat-containing proteins are required for site-specific chloroplast RNA editing. The Journal of Biological Chemistry, 290, 2957–2968.

    PubMed  CAS  Google Scholar 

  95. Wang, W., Wu, Y., & Messing, J. (2016). Genome-wide analysis of pentatricopeptide-repeat proteins of an aquatic plant. Planta, 244, 893–899.

    PubMed  CAS  Google Scholar 

  96. Wang, Z., Zou, Y., Li, X., Zhang, Q., Chen, L., Wu, H., et al. (2006). Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. The Plant Cell, 18, 676–687.

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Williams, M. A., Tallakson, W. A., Phreaner, C. G., & Mulligan, R. M. (1998). Editing and translation of ribosomal protein S13 transcripts: Unedited translation products are not detectable in maize mitochondria. Current Genetics, 34, 221–226.

    PubMed  CAS  Google Scholar 

  98. Yagi, Y., Tachikawa, M., Noguchi, H., Satoh, S., Obokata, J., & Nakamura, T. (2013). Pentatricopeptide repeat proteins involved in plant organellar RNA editing. RNA Biology, 10, 1419–1425.

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Yoshinaga, K., Iinuma, H., Masuzawa, T., & Uedal, K. (1996). Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucleic Acids Research, 24, 1008–1014.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Yu, W., & Schuster, W. (1995). Evidence for a site-specific cytidine deamination reaction involved in C to U RNA editing of plant mitochondria. Journal of Biological Chemistry, 270, 18227–18233.

    PubMed  CAS  Google Scholar 

  101. Yuan, H., & Liu, D. (2012). Functional disruption of the pentatricopeptide protein SLG1 affects mitochondrial RNA editing, plant development, and responses to abiotic stresses in Arabidopsis. The Plant Journal: For Cell and Molecular Biology, 70, 432–444.

    CAS  Google Scholar 

  102. Zabaleta, E., Mouras, A., Hernould, M., & Araya, A. (1996). Transgenic male-sterile plant induced by an unedited atp9 gene is restored to fertility by inhibiting its expression with antisense RNA. Proceedings of the National Academy of Sciences of the United States of America, 93, 11259–11263.

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Zeltz, P., Kadowaki, K., Kubo, N., Maier, R. M., Hirai, A., & Kossel, H. (1996). A promiscuous chloroplast DNA fragment is transcribed in plant mitochondria but the encoded RNA is not edited. Plant Molecular Biology, 31, 647–656.

    PubMed  CAS  Google Scholar 

  104. Zhang, H. D., Cui, Y. L., Huang, C., Yin, Q. Q., Qin, X. M., Xu, T., et al. (2015). PPR protein PDM1/SEL1 is involved in RNA editing and splicing of plastid genes in Arabidopsis thaliana. Photosynthesis Research, 126, 311–321.

    PubMed  CAS  Google Scholar 

  105. Zhu, Q., Dugardeyn, J., Zhang, C., Takenaka, M., Kuhn, K., Craddock, C., et al. (2012). SLO2, a mitochondrial pentatricopeptide repeat protein affecting several RNA editing sites, is required for energy metabolism. The Plant Journal: For Cell and Molecular Biology, 71, 836–849.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. W. Thompson, Dr. G. White, and Dr. T. Grienenberger for critical reading of the manuscript. This research was supported by a grant from the National Natural Science Foundation of China (31270740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tang.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Luo, C. Molecular and Functional Diversity of RNA Editing in Plant Mitochondria. Mol Biotechnol 60, 935–945 (2018). https://doi.org/10.1007/s12033-018-0126-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0126-z

Keywords

Navigation