Skip to main content
Log in

A Mutant Sumo Facilitates Quick Plasmid Construction for Expressing Proteins with Native N-termini After Tag Removal

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Sumo is one of the fusion tags commonly used to enhance the expression and the solubility of recombinant proteins. One advantage of using sumo is that the removal of the sumo tag is highly specific because its recognition by a sumo protease is determined by its structural characteristics, instead of the sequence of a short peptide. Recently, it was reported that sumo could also be used as a protease recognition site to facilitate the removal of other fusion tags, such as MBP, when sumo itself is not suitable to enhance the solubility of a particular target protein. Using sumo as a recognition site is highly desirable when the target protein needs to have its native N terminus. However, constructing such a plasmid involves more than one cloning step because the N terminus of the target protein needs to be the next residue after the diglycine of sumo. Here, we report the construction of a new vector with a mutant sumo tag. The incorporation of a Pvu II site near the 3′ end of tag coding sequence enables quick construction of plasmids for producing proteins with native termini. Its usage includes producing recombinant food allergens for studying conformational IgE epitopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

ULP/ULP1:

Ubl-specific protease 1

References

  1. Walls, D., & Loughran, S. T. (2011). Tagging recombinant proteins to enhance solubility and aid purification. Methods in Molecular Biology, 681, 151–175.

    Article  CAS  Google Scholar 

  2. Esposito, D., & Chatterjee, D. K. (2006). Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology, 17, 353–358.

    Article  CAS  Google Scholar 

  3. Marblestone, J. G., Edavettal, S. C., Lim, Y., Lim, P., Zuo, X., & Butt, T. R. (2006). Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO. Protein Science, 15, 182–189.

    Article  CAS  Google Scholar 

  4. Guo, W., Cao, L., Jia, Z., Wu, G., Li, T., Lu, F., et al. (2011). High level soluble production of functional ribonuclease inhibitor in Escherichia coli by fusing it to soluble partners. Protein Expression and Purification, 77, 185–192.

    Article  CAS  Google Scholar 

  5. Huang, J., Cao, L., Guo, W., Yuan, R., Jia, Z., & Huang, K. (2012). Enhanced soluble expression of recombinant Flavobacterium heparinum heparinase I in Escherichia coli by fusing it with various soluble partners. Protein Expression and Purification, 83, 169–176.

    Article  CAS  Google Scholar 

  6. Peroutka, R. J., III, Orcutt, S. J., Strickler, J. E., & Butt, T. R. (2011). SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes. Methods in Molecular Biology, 705, 15–30.

    Article  CAS  Google Scholar 

  7. Jenny, R. J., Mann, K. G., & Lundblad, R. L. (2003). A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expression and Purification, 31, 1–11.

    Article  CAS  Google Scholar 

  8. Hosfield, T., & Lu, Q. (1999). Influence of the amino acid residue downstream of (Asp)4Lys on enterokinase cleavage of a fusion protein. Analytical Biochemistry, 269, 10–16.

    Article  CAS  Google Scholar 

  9. Ullah, R., Shah, M. A., Tufail, S., Ismat, F., Imran, M., Iqbal, M., et al. (2016). Activity of the human rhinovirus 3C protease studied in various buffers, additives and detergents solutions for recombinant protein production. PLoS ONE, 11, e0153436.

    Article  Google Scholar 

  10. Banki, M. R., & Wood, D. W. (2005). Inteins and affinity resin substitutes for protein purification and scale up. Microbial Cell Factories, 4, 32.

    Article  Google Scholar 

  11. Kapust, R. B., Tozser, J., Fox, J. D., Anderson, D. E., Cherry, S., Copeland, T. D., et al. (2001). Tobacco etch virus protease: Mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Engineering, 14, 993–1000.

    Article  CAS  Google Scholar 

  12. Malakhov, M. P., Mattern, M. R., Malakhova, O. A., Drinker, M., Weeks, S. D., & Butt, T. R. (2004). SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. Journal of Structural and Functional Genomics, 5, 75–86.

    Article  CAS  Google Scholar 

  13. Dyballa, N., & Metzger, S. (2009). Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. Journal of Visualized Experiments, 30, 1431.

  14. Mossessova, E., & Lima, C. D. (2000). Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Molecular Cell, 5, 865–876.

    Article  CAS  Google Scholar 

  15. Pickart, C. M., & Rose, I. A. (1986). Mechanism of ubiquitin carboxyl-terminal hydrolase. Borohydride and hydroxylamine inactivate in the presence of ubiquitin. Journal of Biological Chemistry, 261, 10210–10217.

    CAS  Google Scholar 

  16. Mueller, G. A., Gosavi, R. A., Pomes, A., Wunschmann, S., Moon, A. F., London, R. E., et al. (2011). Ara h 2: Crystal structure and IgE binding distinguish two subpopulations of peanut allergic patients by epitope diversity. Allergy, 66, 878–885.

    Article  CAS  Google Scholar 

  17. Schmidt, T. G., & Skerra, A. (2007). The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nature Protocols, 2, 1528–1535.

    Article  CAS  Google Scholar 

  18. Walhout, A. J., Temple, G. F., Brasch, M. A., Hartley, J. L., Lorson, M. A., van den Heuvel, S., et al. (2000). GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes. Methods in Enzymology, 328, 575–592.

    Article  CAS  Google Scholar 

  19. Guo, F., Wang, Y., & Zhang, Y.-Z. (2007). Construction of two recombination yeast two-hybrid vectors by in vitro recombination. Molecular Biotechnology, 36, 38–43.

    Article  CAS  Google Scholar 

  20. Guo, F., Chiang, M. Y., Wang, Y., & Zhang, Y. Z. (2008). An in vitro recombination method to convert restriction- and ligation-independent expression vectors. Biotechnology Journal, 3, 370–377.

    Article  CAS  Google Scholar 

  21. Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A., 3rd, & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6, 343–345.

    Article  CAS  Google Scholar 

  22. Zhang, Y. Z., Du, W. X., Fregevu, C., Kothary, M. H., Harden, L., & McHugh, T. H. (2014). Expression, purification, and characterization of almond (Prunus dulcis) allergen Pru du 4. Journal of Agriculture and Food Chemistry, 62, 12695–12700.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhu Zhang.

Ethics declarations

Conflict of interest

The authors declare no commercial or financial conflict of interest.

Additional information

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Fan, Y. A Mutant Sumo Facilitates Quick Plasmid Construction for Expressing Proteins with Native N-termini After Tag Removal. Mol Biotechnol 59, 159–167 (2017). https://doi.org/10.1007/s12033-017-9998-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-9998-6

Keywords

Navigation