Skip to main content

Advertisement

Log in

A Concise Review of MicroRNA Exploring the Insights of MicroRNA Regulations in Bacterial, Viral and Metabolic Diseases

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNA (miRNA) is a small section of ribonucleic acid (RNA) that reduces the protein formation by making the pair of the complementary piece of mRNA. The genes of miRNA are present as transcriptional or polycistronic units in the chromosomes. The cellular multiplication, separation and existence like the multitude of genetic functions are affected by miRNA. Nearly 50% of identified miRNA are located in the residence in the intronic part of the genes. The mature miRNA is yielded in two steps. Drosha and RNA-induced silencing complex are the catalysts that play an important role in miRNA synthesis. The miRNA may function by just hindering the translation or complete vitiation of miRNA that occurs to control the genes. The microRNA antagonists and miRNA mimics are therapeutics approaches for the treatment of abnormalities. The upregulation and downregulation of miRNAs are linked to a number of diseases as miR-122 is associated with viral hepatitis, and some members of let-7 and other miRNAs are concerned with various diseases. Overexpressed miRNAs may function as both oncogenes and regulator of cellular processes. The miRNA functions can be altered by single-point mutations in miRNA target and epigenetic silencing of transcription units. There are numerous molecular targets for miRNA as degradation by nuclease and phosphodiesterase. Thus, miRNA has potential applications in disease diagnosis along with therapy, but the mechanisms involved in miRNA systems and its targeted delivery of miRNA are much more important to achieve its therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu, W., et al. (2013). Biological basis of miRNA action when their targets are located in human protein-coding region. PLoS ONE, 8(2013), 63403.

    Article  Google Scholar 

  2. MacFarlane, L. A., & Murphy, P. R. (2010). MicroRNA: Biogenesis. Function, and Role in CancerCurr Genomics, 11(2010), 537–561.

    CAS  Google Scholar 

  3. Schirle, N. T., et al. (2014). Structural basis for microRNA targeting. Science, 346, 608–613.

    Article  CAS  Google Scholar 

  4. Korf, I. (2013). Genomics: The state of the art in RNA-seq analysis. Nature Methods, 10, 1165–1166.

    Article  CAS  Google Scholar 

  5. Geeleher, P., et al. (2012). The regulatory effect of miRNAs is a heritable genetic trait in humans. BMC Genomics, 13, 383.

    CAS  Google Scholar 

  6. Kuchen, S., et al. (2010). Regulation of MicroRNA expression and abundance during lymphopoiesis. Immunity, 32, 828–839.

    Article  CAS  Google Scholar 

  7. Orang, A. V., Safaralizadeh, R., & Kazemzadeh-Bavili, M. (2014). Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. International Journal of Genomics. doi:10.1155/2014/970607.

    Google Scholar 

  8. Winter, J., & Diederichs, S. (2011). MicroRNA biogenesis and cancer. Methods in Molecular Biology, 676, 3–22.

    Article  CAS  Google Scholar 

  9. Melamed, Z., et al. (2013). Alternative splicing regulates biogenesis of miRNAs located across exon–intron junctions. Molecular Cell, 50, 869–881.

    Article  CAS  Google Scholar 

  10. Melo, C. A., & Melo, S. A. (2014). Non-coding RNAs and Cancer. In Biogenesis and physiology of microRNAs (Vol. 2, pp. 5–24). Springer Science and business media.

  11. Chen, K., & Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics, 8, 93–103.

    Article  CAS  Google Scholar 

  12. Filipowicz, W., et al. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews Genetics, 9(2008), 102–114.

    Article  CAS  Google Scholar 

  13. Ctalanotto, C., et al. (2016). MicroRNA in control of gene expression: An overview of nuclear functions. International Journal of Molecular Sciences, 17, 1712.

    Article  Google Scholar 

  14. Tamir, L. A., et al. (2014). The interplay between pre-mRNA splicing and microRNA biogenesis within the supra spliceosome. Nucleic Acids Research, 42(7), 4640–4651.

    Article  Google Scholar 

  15. Katahira, J., & Yoneda, Y. (2011). Nucleocytoplasmic transport of MicroRNAs and related small RNAs. Traffic, 12, 1468–1474.

    Article  CAS  Google Scholar 

  16. Shomron, N., & Levy, C. (2009). MicroRNA-biogenesis and Pre-mRNA splicing crosstalk (pp. 1–6). doi:10.1155/2009/594678.

  17. Czech, B., & Hannon, G. J. (2011). Small RNA sorting: Matchmaking for Argonautes. Nature Reviews Genetics, 12, 19–31.

    Article  CAS  Google Scholar 

  18. Wahid, F., et al. (1803). MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta, 2010, 1231–1243.

    Google Scholar 

  19. Rooij, E. V. (2011). The art of MicroRNA research. Circulation Research, 108(2011), 219–234.

    Article  Google Scholar 

  20. Lee, S. J., et al. (2011). Selective nuclear export mechanism of small RNAs. Current Opinion in Structural Biology, 2, 101–108.

    Article  Google Scholar 

  21. Bartel, D. P. (2004). MicroRNAs: Genomics. Biogenesis, Mechanism, and Function, Cell, 166, 281–297.

    Google Scholar 

  22. Lu, Y. C., & Cheng, A. J. (2014). Pathological function and clinical significance of microRNA-10b in cancer. Cancer Science and Research is an Open Access, 1, 1–5.

    Google Scholar 

  23. Jin, H. Y., & Xiao, C. (2015). MicroRNA mechanisms of action: What have we learned from Mice? Frontiers in Genetics, 6, 328.

    Google Scholar 

  24. Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136, 642–655.

    Article  CAS  Google Scholar 

  25. Wilczynska, A., & Bushell, M. (2015). The complexity of miRNA-mediated repression. Cell Death and Differentiation, 22, 22–33.

    Article  CAS  Google Scholar 

  26. Nilsen, T. W. (2007). Mechanisms of microRNA-mediated gene regulation in animal cells. Trends in Genetics, 23(2007), 243–249.

    Article  CAS  Google Scholar 

  27. Selbach, M., et al. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature, 455, 58–63.

    Article  CAS  Google Scholar 

  28. Dalmay, T. (2013). Mechanism of miRNA-mediated repression of mRNA translation. Biochemical Society Essays in Biochemistry, 54, 29–38.

    Article  CAS  Google Scholar 

  29. Pillai, R. S., et al. (2007). Repression of protein synthesis by miRNAs: How many mechanisms? Trends in Cell Biology, 17, 118–126.

    Article  CAS  Google Scholar 

  30. Blahna, M. T., & Hata, A. (2012). Smad-mediated regulation of microRNA biosynthesis. FEBS Letters, 586, 1906–1912.

    Article  CAS  Google Scholar 

  31. Xie, Z., et al. (2003). Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Current Biology, 13, 784–789.

    Article  CAS  Google Scholar 

  32. Bagga, S., et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 122, 553–563.

    Article  CAS  Google Scholar 

  33. Key, M. J., & Gonçalve, I. C. (2014). The role of miRNA in motorneuron disease. Frontiers in Cellular Neuroscience, 8, 1–8.

    Google Scholar 

  34. Ardekani, A. M., & Naeini, M. M. (2010). The role of MicroRNAs in human diseases. Avicenna Journal of Medical Biotechnology, 2(2010), 161–179.

    CAS  Google Scholar 

  35. Cristopher, A. F., et al. (2016). MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspectives in Clinical Research, 7, 68–77.

    Article  Google Scholar 

  36. Girard, M., Jacquemin, E., Munnich, A., et al. (2008). miR-122, a paradigm for the role of microRNAs in the liver. Journal of Hepatology, 48, 648–656.

    Article  CAS  Google Scholar 

  37. Hou, W., Tian, Q., Zheng, J., et al. (2010). MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology, 51, 1494–1504.

    Article  CAS  Google Scholar 

  38. Xu, H., He, J., Dong Xiao, Z., et al. (2010). Liver-enriched transcription factors regulate MicroRNA-122 that targets CUTL1 during liver development. Hepatology, 52, 1431–1442.

    Article  CAS  Google Scholar 

  39. Geng Deng, X., Lin Qiu, R., & Hao Wu, Y. (2014). Overexpression of miR-122 promotes the hepatic differentiation and maturation of mouse ESCs through a miR-122/FoxA1/HNF4a-positive feedback loop. Liver International, 34, 281–295.

    Article  Google Scholar 

  40. Coulouarn, C., Factor, V. M., Andersen, J. B., et al. (2009). Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene, 28, 3526–3536.

    Article  CAS  Google Scholar 

  41. Zeisel, M. B., Pfeffer, S., Baumert, T. F., et al. (2013). miR-122 acts as a tumor suppressor in hepatocarcinogenesis in vivo. Hepatology, 58, 821–823.

    Article  CAS  Google Scholar 

  42. Jangra, R. K., Yi, M., & Lemon, S. M. (2010). Regulation of hepatitis C virus translation and infectious virus production by the MicroRNA miR-122. Journal of Virology, 84, 6615–6625.

    Article  CAS  Google Scholar 

  43. Inga Henke, J., Goergen, D., Zheng, J., et al. (2008). microRNA-122 stimulates translation of hepatitis C virus RNA. The EMBO Journal, 27, 3300–3310.

    Article  Google Scholar 

  44. Li, G., & Xiong, X. (2009). MicroRNAs and hepatitis viruses. Frontiers of Medicine in China, 3, 265–270.

    Article  Google Scholar 

  45. Marquart, T. J., Allen, R. M., Ory, D. S., et al. (2010). miR-33 links SREBP-2 induction to repression of sterol transporters. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1005191107.

    Google Scholar 

  46. Rayner, K. J., Suarez, Y., Davalos, A., et al. (2010). MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 328, 1570–1573.

    Article  CAS  Google Scholar 

  47. Krutzfeldt, J., & Stoffe, M. (2006). MicroRNAs: A new class of regulatory genes affecting metabolism. Cell Press, 4(1), 9–12.

    Article  CAS  Google Scholar 

  48. Connel, R. M. O., Taganov, K. D., Boldin, M. P., et al. (2007). MicroRNA-155 is induced during the macrophage inflammatory response. Immunology, 104, 1604–1609.

    Google Scholar 

  49. Dorsett, Y., Mcbride, K. M., Jankovic, M., et al. (2008). MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity, 28, 630–638.

    Article  CAS  Google Scholar 

  50. Xiao, C., & Rajewsky, K. (2009). MicroRNA control in the immune system: Basic principles. Cell, 136(2009), 26–36.

    Article  CAS  Google Scholar 

  51. Li, Y., Guessos, F., Zhang, Y., et al. (2010). MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Research, 69, 7569–7576.

    Article  Google Scholar 

  52. Zhang, Y., et al. (2012). The role of microRNAs in glioma initiation and progression. Frontiers in Bioscience, 17, 700–712.

    Article  CAS  Google Scholar 

  53. Lou, J. W., et al. (2015). Role of micro-RNA (miRNA) in the pathogenesis of glioblastoma. European Review for Medical and Pharmacological Sciences, 19, 1630–1639.

    Google Scholar 

  54. Feinberg, M. W., & Moore, K. J. (2016). MicroRNA regulation of atherosclerosis. Circulation Research, 118, 703–720.

    Article  CAS  Google Scholar 

  55. Boon, R., & Vickers, K. C. (2013). Intercellular transport of MicroRNA. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 186–192.

    Article  CAS  Google Scholar 

  56. Libanio, D., et al. (2015). Helicobacter pylori and microRNAs: Relation with innate immunity and progression of preneoplastic conditions. World Journal of Clinical Oncology, 10(6), 111–132.

    Article  Google Scholar 

  57. Eulalio, A., et al. (2012). The mammalian microRNA response to bacterial infections. RNA Biology, 9, 742–750.

    Article  CAS  Google Scholar 

  58. Schulte, L. N., et al. (2012). Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. International Journal of Molecular Sciences, 13, 1173–1185.

    Article  Google Scholar 

  59. Izar, B., et al. (2017). microRNA response to Listeria monocytogenes infection in epithelial. Cells, Frontiers in Immunology, 8, 107.

    Google Scholar 

  60. Salama, A., et al. (2014). MicroRNA-29b modulates innate and antigen-specific immune responses in mouse models of autoimmunity. PLoS ONE, 9, e106153.

    Article  Google Scholar 

  61. Ahluwalia, P. K., et al. (2013). Perturbed microRNA expression by mycobacterium tuberculosis promotes macrophage polarization leading to pro-survival foam cell.

  62. Bandyopadhyay, S., Long, M. E., & Allen, L. A. H. (2014). Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response. PLoS ONE, 9(10), e109525. doi:10.1371/journal.pone.0109525.

  63. Skalsky, R. L., & Cullen, B. R. (2010). Viruses, microRNAs, and host interactions. Annual Review of Microbiology, 64(2010), 123–141.

    Article  CAS  Google Scholar 

  64. Broderick, J. A., & Zamore, P. D. (2011). MicroRNA therapeutics. Gene Therapy, 18, 1104–1110.

    Article  CAS  Google Scholar 

  65. Jackson, A. I., & Linsley, P. S. (2010). The therapeutic potential of microRNA modulation. Discovery Medicine, 9(2010), 311–318.

    Google Scholar 

  66. Li, Z., & Rana, T. M. (2014). Therapeutic targeting of microRNAs: Current status and future challenges. Nature Reviews Drug Discovery, 13(2014), 622–638.

    Article  CAS  Google Scholar 

  67. Leung, A. K. L., & Sharp, P. A. (2010). MicroRNA functions in stress responses. Molecular Cell, 22(40), 205–215.

    Article  Google Scholar 

  68. Stenvang, J., Petri, A., Lindow, M., Obad, S., & Kauppinen, S. (2012). Inhibition of microRNA function by antimiR oligonucleotides. Silence, 3, 1. doi:10.1186/1758-907X-3-1.

    Article  CAS  Google Scholar 

  69. Rooji, E. V., & Kauppinen, S. (2014). Development of microRNA therapeutics is coming of age. EMBO Molecular Medicine, 6, 851–864.

    Article  Google Scholar 

  70. Jackson, A., & Linsley, P. S. (2010). The Therapeutic Potential of microRNA Modulation. Molecular Cell, 40, 205–215.

    Article  Google Scholar 

  71. Liu, J., et al. (2005). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biology, 7(2005), 719–723.

    Article  CAS  Google Scholar 

  72. Nedaeinia, R., et al. (2017). Current status and perspectives regarding LNA-anti-miR oligonucleotides and microRNA miR-21 inhibitors as a potential therapeutic option in treatment of colorectal cancer. Journal of Cellular Biochemistry. doi:10.1002/jcb.26047.

    Google Scholar 

  73. Obad, S., et al. (2011). Silencing of microRNA families by seed-targeting tiny LNAs. Nature Genetics, 43, 371–378.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahsan Naveed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveed, A., ur-Rahman, S., Abdullah, S. et al. A Concise Review of MicroRNA Exploring the Insights of MicroRNA Regulations in Bacterial, Viral and Metabolic Diseases. Mol Biotechnol 59, 518–529 (2017). https://doi.org/10.1007/s12033-017-0034-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0034-7

Keywords

Navigation