Skip to main content

Advertisement

Log in

Expression of Two Novel β-Glucosidases from Chaetomium atrobrunneum in Trichoderma reesei and Characterization of the Heterologous Protein Products

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Two novel GH3 family thermostable β-glucosidases from the filamentous fungus Chaetomium atrobrunneum (CEL3a and CEL3b) were expressed in Trichoderma reesei, purified by two-step ion exchange chromatography, and characterized. Both enzymes were active over a wide range of pH as compared to Neurospora crassa β-glucosidase GH3-3, which was also expressed in T. reesei and purified. The optimum temperature of both C. atrobrunneum enzymes was around 60 °C at pH 5, and both enzymes had better thermal and pH stability and higher resistance to metallic compounds and to glucose inhibition than GH3-3. They also showed higher activity against oligosaccharides composed of glucose units and linked with β-1,4-glycosidic bonds and moreover, had higher affinity for cellotriose over cellobiose. In hydrolysis tests against Avicel cellulose and steam-exploded sugarcane bagasse, performed at 45 °C, particularly the CEL3a enzyme performed similarly to N. crassa GH3-3 β-glucosidase. Taking into account the thermal stability of the C. atrobrunneum β-glucosidases, they both represent promising alternatives as enzyme mixture components for improved cellulose saccharification at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ankudimova, N. V., Baraznenok, V. A., Becker, E. G., & Okunev, O. N. (1999). Cellulase complex from Chaetomium cellulolyticum: Isolation and properties of major components. Biochemistry, 64, 1068–1073.

    CAS  Google Scholar 

  2. Barron, M. A., Sutton, D. A., Veve, R., Guarro, J., Rinaldi, M., Thompson, E., et al. (2003). Invasive mycotic infections caused by Chaetomium perlucidum, a new agent of cerebral phaeohyphomycosis. Journal of Clinical Microbiology, 41, 5302–5307.

    Article  CAS  Google Scholar 

  3. Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Microbial beta-glucosidases: cloning, properties, and applications. Critical Reviews in Biotechnology, 22, 375–407.

    Article  CAS  Google Scholar 

  4. Blumer-Schuette, S. E., Brown, S. D., Sander, K. B., Bayer, E. A., Kataeva, I., Zurawski, J. V., et al. (2014). Thermophilic lignocellulose deconstruction. FEMS Microbiology Reviews, 38, 393–448.

    Article  CAS  Google Scholar 

  5. Bohlin, C., Olsen, S. N., Morant, M. D., Patkar, S., Borch, K., & Westh, P. (2010). A comparative study of activity and apparent inhibition of fungal beta-glucosidases. Biotechnology and Bioengineering, 107, 943–952.

    Article  CAS  Google Scholar 

  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  7. Canilha, L., Chandel, A. K., Milessi, T. S. S., Antunes, F. A. F., Freitas, W. L. C., Felipe, M. G. A., et al. (2012). Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology. doi:10.1155/2012/989572.

    Google Scholar 

  8. Cuomo, C. A., Untereiner, W. A., Ma, L. J., Grabherr, M., & Birren, B. W. (2015). Draft genome sequence of the cellulolytic fungus Chaetomium globosum. Genome Announcements. doi:10.1128/genomeA.00021-15.

    Google Scholar 

  9. de Giuseppe, P. O., Souza, T. A., Souza, F. H., Zanphorlin, L. M., Machado, C. B., Ward, R. J., et al. (2014). Structural basis for glucose tolerance in GH1 beta-glucosidases. Acta Crystallographica. Section D, Biological Crystallography, 70, 1631–1639.

    Article  Google Scholar 

  10. El-Gindy, A. A., Saad, R. R., & Fawzi, E. (2003). Purification and some properties of exo-1,4-beta-glucanase from Chaetomium olivaceum. Acta Microbiologica Polonica, 52, 35–44.

    Google Scholar 

  11. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  12. Gietz, R. D. (2014). Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods in Molecular Biology, 1163, 33–44.

    Article  CAS  Google Scholar 

  13. Häkkinen, M., Arvas, M., Oja, M., Aro, N., Penttilä, M., Saloheimo, M., et al. (2012). Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microbial Cell Factories, 11, 134–160.

    Article  Google Scholar 

  14. Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2009). Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Applied Biochemistry and Biotechnology, 152, 88–107.

    Article  CAS  Google Scholar 

  15. Kim, I. J., Nam, K. H., Yun, E. J., Kim, S., Youn, H. J., Lee, H. J., et al. (2015). Optimization of synergism of a recombinant auxiliary activity 9 from Chaetomium globosum with cellulase in cellulose hydrolysis. Applied Microbiology and Biotechnology, 99, 8537–8547.

    Article  CAS  Google Scholar 

  16. Kuhad, R. C., Singh, A., & Eriksson, K. E. (1997). Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Advances in Biochemical Engineering/Biotechnology, 57, 45–125.

    Article  CAS  Google Scholar 

  17. Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology, 35, 377–391.

    Article  CAS  Google Scholar 

  18. McIlvaine, T. C. (1921). A buffer solution for colorimetric comparaison. Journal of Biological Chemistry, 49, 183–186.

    CAS  Google Scholar 

  19. Nevalainen, H., & Peterson, R. (2014). Making recombinant proteins in filamentous fungi-are we expecting too much? Front Microbiology, 5, 75.

    Google Scholar 

  20. Papageorgiou, A. C., & Li, D. (2015). Expression, purification and crystallization of a family 55 beta-1,3-glucanase from Chaetomium thermophilum. Acta Crystallographica Section F: Structural Biology Communications, 71, 680–683.

    CAS  Google Scholar 

  21. Penttilä, M., Nevalainen, H., Rättö, M., Salminen, E., & Knowles, J. (1987). A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene, 61, 155–164.

    Article  Google Scholar 

  22. Rahikainen, J., Moilanen, U., Nurmi-Rantala, S., Lappas, A., Koivula, A., Viikari, L., et al. (2013). Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Bioresource Technology, 146, 118–125.

    Article  CAS  Google Scholar 

  23. Saloheimo, M., & Pakula, T. M. (2012). The cargo and the transport system: Secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology, 158, 46–57.

    Article  CAS  Google Scholar 

  24. Sipos, B., Benko, Z., Dienes, D., Réczey, K., Viikari, L., & Siika-aho, M. (2012). Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Applied Biochemistry and Biotechnology, 161, 347–364.

    Article  Google Scholar 

  25. Su, X., Schmitz, G., Zhang, M., Mackie, R. I., & Cann, I. K. (2012). Heterologous gene expression in filamentous fungi. Advances in Applied Microbiology, 81, 1–61.

    Article  CAS  Google Scholar 

  26. Sumner, J. B. (1924). The estimation of sugar in diabetic urine using dinitrosalicylic acid. Journal of Biological Chemistry, 62(2), 287–290.

    CAS  Google Scholar 

  27. Teugjas, H., & Väljamäe, P. (2013). Selecting beta-glucosidases to support cellulases in cellulose saccharification. Biotechnology for Biofuels, 6, 105.

    Article  CAS  Google Scholar 

  28. Uchima, C. A., Tokuda, G., Watanabe, H., Kitamoto, K., & Arioka, M. (2011). Heterologous expression and characterization of a glucose-stimulated beta-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Applied Microbiology and Biotechnology, 89, 1761–1771.

    Article  CAS  Google Scholar 

  29. Uchima, C. A., Tokuda, G., Watanabe, H., Kitamoto, K., & Arioka, M. (2012). Heterologous expression in Pichia pastoris and characterization of an endogenous thermostable and high-glucose-tolerant beta-glucosidase from the termite Nasutitermes takasagoensis. Applied and Environment Microbiology, 78, 4288–4293.

    Article  CAS  Google Scholar 

  30. Wilson, D. B. (2009). Cellulases and biofuels. Current Opinion in Biotechnology, 20, 295–299.

    Article  CAS  Google Scholar 

  31. Znameroski, E. A., Coradetti, S. T., Roche, C. M., Tsai, J. C., Iavarone, A. T., Cate, J. H., et al. (2012). Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proceedings of the National Academy of Sciences of the United States of America, 109, 6012–6017.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by jointly by Finland and Brazil in sustainable energy (Academy of Finland-CNPq), decision number 271146 of Academy of Finland, National Council of Scientific and Technological Development (CNPq), Brazil (490249/2012-4 Bilateral agreements/Call number 30/2012 - CNPq/AKA FINLÂNDIA), and the Foundation for Research of São Paulo State (FAPESP), Brazil. The fungal genome sequencing was supported from the project ‘Metagenome’ funded by the Finnish Funding Agency for Innovation, decision number 40148/07. We thank Dr Merja Oja for sequence search, Dr Martina Andberg for assistance with the protein purification and for providing some of the substrates, and Dr. Teun Boekhout, The Fungal Biodiversity Centre (CBS), the Netherlands, for providing the C. atrobrunneum CBS 269.91 strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Colabardini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (PPTX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colabardini, A.C., Valkonen, M., Huuskonen, A. et al. Expression of Two Novel β-Glucosidases from Chaetomium atrobrunneum in Trichoderma reesei and Characterization of the Heterologous Protein Products. Mol Biotechnol 58, 821–831 (2016). https://doi.org/10.1007/s12033-016-9981-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9981-7

Keywords

Navigation