Skip to main content
Log in

The Toolbox for Modified Aptamers

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Aptamers are nucleic acid-based scaffolds that can bind with high affinity to a variety of biological targets. Aptamers are identified from large DNA or RNA libraries through a process of directed molecular evolution (SELEX). Chemical modification of nucleic acids considerably increases the functional and structural diversity of aptamer libraries and substantially increases the affinity of the aptamers. Additionally, modified aptamers exhibit much greater resistance to biodegradation. The evolutionary selection of modified aptamers is conditioned by the possibility of the enzymatic synthesis and replication of non-natural nucleic acids. Wild-type or mutant polymerases and their non-natural nucleotide substrates that can support SELEX are highlighted in the present review. A focus is made on the efforts to find the most suitable type of nucleotide modifications and the engineering of new polymerases. Post-SELEX modification as a complementary method will be briefly considered as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pinheiro, V. B., & Holliger, P. (2014). Towards XNA nanotechnology: New materials from synthetic genetic polymers. Trends in Biotechnology, 32, 321–328.

    Article  CAS  Google Scholar 

  2. Faltin, B. (2013). Current methods for fluorescence-based universal sequence-dependent detection of nucleic acids in homogenous assays and clinical applications. Clinical Chemistry, 59, 1567–1582.

    Article  CAS  Google Scholar 

  3. Deleavey, G. F., Damha, M. J., Zengerle, R., & von Stetten, F. (2012). Designing chemically modified oligonucleotides for targeted gene silencing. Chemistry & Biology, 19, 937–954.

    Article  CAS  Google Scholar 

  4. Sun, H., & Zu, Y. (2015). A highlight of recent advances in aptamer technology and its application. Molecules, 20, 11959–11980.

    Article  CAS  Google Scholar 

  5. Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505–510.

    Article  CAS  Google Scholar 

  6. Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818–822.

    Article  CAS  Google Scholar 

  7. Darmostuk, M., Rimpelova, S., Gbelcova, H., & Ruml, T. (2015). Current approaches in SELEX: An update to aptamer selection technology. Biotechnology Advances, 33, 1141–1161.

    Article  CAS  Google Scholar 

  8. Ozer, A., Pagano, J. M., & Lis, J. T. (2014). New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization. Molecular Therapy Nucleic Acids, 3, e183.

    Article  CAS  Google Scholar 

  9. Rohloff, J. C., Gelinas, A. D., Jarvis, T. C., Ochsner, U. A., Schneider, D. J., Gold, L., & Janjic, N. (2014). Nucleic acid ligands with protein-like side chains: Modified aptamers and their use as diagnostic and therapeutic agents. Molecular Therapy Nucleic Acids, 3, e201.

    Article  CAS  Google Scholar 

  10. Tolle, F., & Mayer, G. (2013). Dressed for success—applying chemistry to modulate aptamer functionality. Chemical Science, 4, 60–67.

    Article  CAS  Google Scholar 

  11. Diafa, S., & Hollenstein, M. (2015). Generation of aptamers with an expanded chemical repertoire. Molecules, 20, 16643–16671.

    Article  CAS  Google Scholar 

  12. Zhu, B., Hernandez, A., Tan, M., Wollenhaupt, J., Tabor, S., & Richardson, C. C. (2015). Synthesis of 2′-Fluoro RNA by Syn5 RNA polymerase. Nucleic Acids Research, 43, e94.

    Article  CAS  Google Scholar 

  13. Meyer, A. J., Garry, D. J., Hall, B., Byrom, M. M., McDonald, H. G., Yang, X., et al. (2015). Transcription yield of fully 2′-modified RNA can be increased by the addition of thermostabilizing mutations to T7 RNA polymerase mutants. Nucleic Acids Research, 43, 7480–7488.

    Article  CAS  Google Scholar 

  14. Lauridsen, L. H., Rothnagel, J. A., & Veedu, R. N. (2012). Enzymatic recognition of 2′-modified ribonucleoside 5′-triphosphates: Towards the evolution of versatile aptamers. ChemBioChem, 13, 19–25.

    Article  CAS  Google Scholar 

  15. Chen, T., & Romesberg, F. E. (2014). Directed polymerase evolution. FEBS Letters, 588, 219–229.

    Article  CAS  Google Scholar 

  16. Kunkel, T. A. (1992). DNA replication fidelity. Journal of Biological Chemistry, 267, 18251–18254.

    CAS  Google Scholar 

  17. Keefe, A. D., & Cload, S. T. (2008). SELEX with modified nucleotides. Current Opinion in Chemical Biology, 12, 448–456.

    Article  CAS  Google Scholar 

  18. Eckstein, F. (2014). Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Therapeutics, 24, 374–387.

    Article  CAS  Google Scholar 

  19. Yang, X., & Gorenstein, D. G. (2004). Progress in thioaptamer development. Current Drug Targets, 5, 705–715.

    Article  CAS  Google Scholar 

  20. Jung, K. H., & Marx, A. (2005). Nucleotide analogues as probes for DNA polymerases. Cellular and Molecular Life Sciences, 62, 2080–2091.

    Article  CAS  Google Scholar 

  21. Wolfe, J. L., Kawate, T., Belenky, A., & Stanton, V, Jr. (2002). Synthesis and polymerase incorporation of 50-amino-20,50-dideoxy-50-N-triphosphate nucleotides. Nucleic Acids Research, 30, 3739–3747.

    Article  CAS  Google Scholar 

  22. He, K., Porter, K. W., Hasan, A., Briley, J. D., & Shaw, B. R. (1999). Synthesis of 5-substituted 20-deoxycytidine 50-(a-P-borano)triphosphates, their incorporation into DNA and effects on exonuclease. Nucleic Acids Research, 27, 1788–1794.

    Article  CAS  Google Scholar 

  23. Darfeuille, F., Arzumanov, A., Gryaznov, S., Gait, M. J., Di Primo, C., & Toulmé, J. J. (2002). Loop-loop interaction of HIV-1 TAR RNA with N3′ → P5′ deoxyphosphoramidate aptamers inhibits in vitro Tat-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 99, 9709–9714.

    Article  CAS  Google Scholar 

  24. Zaitseva, M., Kaluzhny, D., Shchyolkina, A., Borisova, O., Smirnov, I., & Pozmogova, G. (2010). Conformation and thermostability of oligonucleotide d(GGTTGGTGTGGTTGG) containing thiophosphoryl internucleotide bonds at different positions. Biophysical Chemistry, 146, 1–6.

    Article  CAS  Google Scholar 

  25. Kusser, W. (2000). Chemically modified nucleic acid aptamers for in vitro selections: Evolving evolution. Journal of Biotechnology, 74, 27–38.

    CAS  Google Scholar 

  26. Karlsen, K. K., & Wengel, J. (2012). Locked nucleic acid and aptamers. Nucleic Acid Therapeutics, 22, 366–370.

    CAS  Google Scholar 

  27. Veedu, R. N., Burri, H. V., Kumar, P., Sharma, P. K., Hrdlicka, P. J., Vester, B., & Wengel, J. (2010). Polymerase-directed synthesis of C5-ethynyl locked nucleic acids. Bioorganic & Medicinal Chemistry Letters, 20, 6565–6568.

    Article  CAS  Google Scholar 

  28. Perlíková, P., Eberlin, L., Ménová, P., Raindlová, V., Slavětínská, L., Tloušťová, E., et al. (2013). Synthesis and cytostatic and antiviral activities of 2′-deoxy-2′,2′-difluororibo- and 2′-deoxy-2′-fluororibonucleosides derived from 7-(Het)aryl-7-deazaadenines. ChemMedChem, 8, 832–846.

    Article  CAS  Google Scholar 

  29. Hollenstein, M., & Leumann, C. J. (2014). Synthesis and biochemical characterization of tricyclothymidine triphosphate (tc-TTP). ChemBioChem, 15, 1901–1904.

    Article  CAS  Google Scholar 

  30. Vastmans, K., Froeyen, M., Kerremans, L., Pochet, S., & Herdewijn, P. (2001). Reverse transcriptase incorporation of 1,5-anhydrohexitol nucleotides. Nucleic Acids Research, 29, 3154–3163.

    Article  CAS  Google Scholar 

  31. Bande, O., Abu El Asrar, R., Braddick, D., Dumbre, S., Pezo, V., Schepers, G., et al. (2015). Isoguanine and 5-methyl-isocytosine bases, in vitro and in vivo. Chemistry: A European Journal, 21, 5009–5022.

    Article  CAS  Google Scholar 

  32. Giller, G., Tasara, T., Angerer, B., Mühlegger, K., Amacker, M., & Winter, H. (2003). Incorporation of reporter molecule-labeled nucleotides by DNA polymerases. I. Chemical synthesis of various reporter group-labeled 2′-deoxyribonucleoside-5′-triphosphates. Nucleic Acids Research, 31, 2630–2635.

    Article  CAS  Google Scholar 

  33. Bergen, K., Steck, A. L., Strütt, S., Baccaro, A., Welte, W., Diederichs, K., & Marx, A. (2012). Structures of KlenTaq DNA polymerase caught while incorporating C5-modified pyrimidine and C7-modified 7-deazapurine nucleoside triphosphates. Journal of the American Chemical Society, 134, 11840–11843.

    Article  CAS  Google Scholar 

  34. Obeid, S., Baccaro, A., Welte, W., Diederichs, K., & Marx, A. (2010). Structural basis for the synthesis of nucleobase modified DNA by Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 107, 21327–21331.

    Article  CAS  Google Scholar 

  35. Lam, C., Hipolito, C., & Perrin, D. M. (2008). Synthesis and enzymatic incorporation of modified deoxyadenosine triphosphates. European Journal of Organic Chemistry, 29, 4915–4923.

    Article  CAS  Google Scholar 

  36. Lam, C. H., Hipolito, C. J., Hollenstein, M., & Perrin, D. M. (2011). A divalent metal-dependent self-cleaving DNAzyme with a tyrosine side chain. Organic & Biomolecular Chemistry, 9, 6949–6954.

    Article  CAS  Google Scholar 

  37. Kielkowski, P., Fanfrlík, J., & Hocek, M. (2014). 7-Aryl-7-deazaadenine 2′-deoxyribonucleoside triphosphates (dNTPs): Better substrates for DNA polymerases than dATP in competitive incorporations. Angewandte Chemie Int Ed, 53, 7552–7555.

    Article  CAS  Google Scholar 

  38. Hocek, M., & Fojta, M. (2008). Cross-coupling reactions of nucleoside triphosphates followed by polymerase incorporation. Construction and applications of base-functionalized nucleic acids. Organic & Biomolecular Chemistry, 6, 2233–22341.

    Article  CAS  Google Scholar 

  39. Hocek, M. (2014). Synthesis of base-modified 2′-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified dna for applications in bioanalysis and chemical biology. Journal of Organic Chemistry, 79, 9914–9921.

    Article  CAS  Google Scholar 

  40. Hollenstein, M. (2012). Nucleoside triphosphates: Building blocks for the modification of nucleic acids. Molecules, 17, 13569–13591.

    Article  CAS  Google Scholar 

  41. Baccaro, A., Steck, A., & Marx, A. (2012). Barcoded nucleotides. Angewandte Chemie Int Ed, 51, 254–257.

    Article  CAS  Google Scholar 

  42. Zhu, Z., & Waggoner, A. S. (1997). Molecular mechanism controlling the incorporation of fluorescent nucleotides into DNA by PCR. Cytometry, 28, 206–211.

    Article  CAS  Google Scholar 

  43. Ramanathan, A., Pape, L., & Schwartz, D. C. (2005). High-density polymerase-mediated incorporation of fluorochrome-labeled nucleotides. Analytical Biochemistry, 337, 1–11.

    Article  CAS  Google Scholar 

  44. Brakmann, S., & Löbermann, S. (2001). High-density labeling of dna: Preparation and characterization of the target material for single-molecule sequencing. Angewandte Chemie Int Ed, 40, 1427–1429.

    Article  CAS  Google Scholar 

  45. Anderson, J. P., Angerer, B., & Loeb, L. A. (2005). Incorporation of reporter-labeled nucleotides by DNA polymerases. Biotechniques, 38, 257–264.

    Article  CAS  Google Scholar 

  46. Yu, H., Chao, J., Patek, D., Mujumdar, R., Mujumdar, S., & Waggoner, A. S. (1994). Cyanine dye dUTP analogs for enzymatic labeling of DNA probes. Nucleic Acids Research, 22, 3226–3232.

    Article  CAS  Google Scholar 

  47. Zhu, Z., Chao, J., Yu, H., & Waggoner, A. S. (1994). Directly labeled DNA probes using fluorescent nucleotides with different length linkers. Nucleic Acids Research, 22, 3418–3422.

    Article  CAS  Google Scholar 

  48. Tasara, T., Angerer, B., Damond, M., Winter, H., Dörhöfer, S., Hübscher, U., & Amacker, M. (2003). Incorporation of reporter molecule-labeled nucleotides by DNA polymerases. II. High-density labeling of natural DNA. Nucleic Acids Research, 31, 2636–2646.

    Article  CAS  Google Scholar 

  49. Lacenere, C., Garg, M. K., Stoltz, B. M., & Quake, S. R. (2006). Effects of a modified dye-labeled nucleotide spacer arm on incorporation by thermophilic DNA polymerases. Nucleosides, Nucleotides & Nucleic Acids, 25, 9–15.

    Article  CAS  Google Scholar 

  50. Dziuba, D., Pohl, R., & Hocek, M. (2014). Bodipy-labeled nucleoside triphosphates for polymerase synthesis of fluorescent DNA. Bioconjugate Chemistry, 25, 1984–1995.

    Article  CAS  Google Scholar 

  51. Riedl, J., Ménová, P., Pohl, R., Orság, P., Fojta, M., & Hocek, M. (2012). GFP-like fluorophores as DNA labels for studying DNA-protein interactions. Journal of Organic Chemistry, 77, 8287–8293.

    Article  CAS  Google Scholar 

  52. Riedl, J., Pohl, R., Ernsting, N. P., Orság, P., Fojta, M., & Hocek, M. (2012). Labelling of nucleosides and oligonucleotides by solvatochromic 4-aminophthalimide fluorophore for studying DNA–protein interactions. Chemical Science, 3, 2797–2806.

    Article  CAS  Google Scholar 

  53. Dziuba, D., Pohl, R., & Hocek, M. (2015). Polymerase synthesis of DNA labelled with benzylidene cyanoacetamide-based fluorescent molecular rotors: Fluorescent light-up probes for DNA-binding proteins. Chemical Communications, 51, 4880–4882.

    Article  CAS  Google Scholar 

  54. Jäger, S., Rasched, G., Kornreich-Leshem, H., Engeser, M., Thum, O., & Famulok, M. (2005). A versatile toolbox for variable DNA functionalization at high density. Journal of the American Chemical Society, 127, 15071–15082.

    Article  CAS  Google Scholar 

  55. Kuwahara, M., Nagashima, J., Hasegawa, M., Tamura, T., Kitagata, R., Hanawa, K., et al. (2006). Systematic characterization of 2′-deoxynucleoside-5′-triphosphate analogs as substrates for DNA polymerases by polymerase chain reaction and kinetic studies on enzymatic production of modified DNA. Nucleic Acids Research, 34, 5383–5394.

    Article  CAS  Google Scholar 

  56. Kuwahara, M., Obika, S., Nagashima, J., Ohta, Y., Suto, Y., Ozaki, H., et al. (2008). Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2′,4′-bridged nucleosides. Nucleic Acids Research, 36, 4257–4265.

    Article  CAS  Google Scholar 

  57. Kuwahara, M., & Sugimoto, N. (2010). Molecular evolution of functional nucleic acids with chemical modifications. Molecules, 15, 5423–5444.

    Article  CAS  Google Scholar 

  58. Brudno, Y., & Liu, D. R. (2009). Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers. Chemistry & Biology, 16, 265–276.

    Article  CAS  Google Scholar 

  59. Ono, T., Scalf, M., & Smith, L. M. (1997). 2′-Fluoro modified nucleic acids: Polymerase-directed synthesis, properties and stability to analysis by matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Research, 25, 4581–4588.

    Article  CAS  Google Scholar 

  60. Renders, M., Miller, E., Hollenstein, M., & Perrin, D. (2015). A method for selecting modified DNAzymes without the use of modified DNA as a template in PCR. Chemical Communications, 51, 1360–1362.

    Article  CAS  Google Scholar 

  61. Tolle, F., Brändle, G. M., Matzner, D., & Mayer, G. A. (2015). Versatile approach towards nucleobase-modified aptamers. Angewandte Chemie Int Ed, 54, 10971–10974.

    Article  CAS  Google Scholar 

  62. Horiya, S., MacPherson, I. S., & Krauss, I. J. (2014). Recent strategies targeting HIV glycans in vaccine design. Nature Chemical Biology, 10, 990–999.

    Article  CAS  Google Scholar 

  63. Temme, J. S., MacPherson, I. S., DeCourcey, J. F., & Krauss, I. J. (2014). High temperature SELMA: Evolution of DNA-supported oligomannose clusters which are tightly recognized by HIV bnAb 2G12. Journal of the American Chemical Society, 136, 1726–1729.

    Article  CAS  Google Scholar 

  64. Lee, I., & Berdis, A. J. (2010). Non-natural nucleotides as probes for the mechanism and fidelity of DNA polymerases. Biochimica et Biophysica Acta, 1804, 1064–1080.

    Article  CAS  Google Scholar 

  65. Betz, K., Malyshev, D. A., Lavergne, T., Welte, W., Diederichs, K., Dwyer, T. J., et al. (2012). KlenTaq polymerase replicates unnatural base pairs by inducing a Watson–Crick geometry. Nature Chemical Biology, 8, 612–614.

    Article  CAS  Google Scholar 

  66. Ahle, J. D., Barr, S., Chin, A. M., & Battersby, T. R. (2005). Sequence determination of nucleic acids containing 5-methylisocytosine and isoguanine: Identification and insight into polymerase replication of the non-natural nucleobases. Nucleic Acids Research, 33, 3176–3184.

    Article  CAS  Google Scholar 

  67. Yang, Z., Sismour, A. M., Sheng, P., Puskar, N. L., & Benner, S. A. (2007). Enzymatic incorporation of a third nucleobase pair. Nucleic Acids Research, 35, 4238–4249.

    Article  CAS  Google Scholar 

  68. Kimoto, M., Kawai, R., Mitsui, T., Yokoyama, S., & Hirao, I. (2009). An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Research, 37, e14.

    Article  CAS  Google Scholar 

  69. Morihiro, K., Hoshino, H., Hasegawa, O., Kasahara, Y., Nakajima, K., Kuwahara, M., et al. (2015). Polymerase incorporation of a 2′-deoxynucleoside-5′-triphosphate bearing a 4-hydroxy-2-mercaptobenzimidazole nucleobase analogue. Bioorganic & Medicinal Chemistry Letters, 25, 2888–2891.

    Article  CAS  Google Scholar 

  70. Hsu, G. W., Ober, M., Carell, T., & Beese, L. S. (2004). Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase. Nature, 431, 217–221.

    Article  CAS  Google Scholar 

  71. Reineks, E. Z., & Berdis, A. J. (2004). Evaluating the contribution of base stacking during translesion DNA replication. Biochemistry, 43, 393–404.

    Article  CAS  Google Scholar 

  72. Zhang, X., Motea, E., Lee, I., & Berdis, A. J. (2010). Replication of a universal nucleobase provides unique insight into the role of entropy during DNA polymerization and pyrophosphorolysis. Biochemistry, 49, 3009–3023.

    Article  CAS  Google Scholar 

  73. Lavergne, T., Degardin, M., Malyshev, D. A., Quach, H. T., Dhami, K., Ordoukhanian, P., & Romesberg, F. E. (2013). Expanding the scope of replicable unnatural DNA: Stepwise optimization of a predominantly hydrophobic base pair. Journal of the American Chemical Society, 135, 5408–5419.

    Article  CAS  Google Scholar 

  74. Walsh, J. M., & Beuning, P. J. (2012). Synthetic nucleotides as probes of DNA polymerase specificity. Journal of Nucleic Acids, 2012, 530963.

    Article  CAS  Google Scholar 

  75. Washington, M. T., Helquist, S. A., Kool, E. T., Prakash, L., & Prakash, S. (2003). Requirement of Watson–Crick hydrogen bonding for DNA synthesis by yeast DNA polymerase eta. Molecular and Cellular Biology, 23, 5107–5112.

    Article  CAS  Google Scholar 

  76. Wolfle, W. T., Washington, M. T., Kool, E. T., Spratt, T. E., Helquist, S. A., Prakash, L., & Prakash, S. (2005). Evidence for a Watson–Crick hydrogen bonding requirement in DNA synthesis by human DNA polymerase kappa. Molecular and Cellular Biology, 25, 7137–7143.

    Article  CAS  Google Scholar 

  77. Ong, J. L., Loakes, D., Jaroslawski, S., Too, K., & Holliger, P. (2006). Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide. Journal of Molecular Biology, 361, 537–550.

    Article  CAS  Google Scholar 

  78. Hendrickson, C. L., Devine, K. G., & Benner, S. A. (2004). Probing minor groove recognition contacts by DNA polymerases and reverse transcriptases using 3-deaza-2′-deoxyadenosine. Nucleic Acids Research, 32, 2241–2250.

    Article  CAS  Google Scholar 

  79. Morales, J. C., & Kool, E. T. (2000). Functional hydrogen-bonding map of the minor groove binding tracks of six DNA polymerases. Biochemistry, 39, 12979–12988.

    Article  CAS  Google Scholar 

  80. Obeid, S., Busskamp, H., Welte, W., Diederichs, K., & Marx, A. (2012). Interactions of non-polar and “Click-able” nucleotides in the confines of a DNA polymerase active site. Chemical Communications, 48, 8320–8322.

    Article  CAS  Google Scholar 

  81. Obeid, S., Bußkamp, H., Welte, W., Diederichs, K., & Marx, A. (2013). Snapshot of a DNA polymerase while incorporating two consecutive C5-modified nucleotides. Journal of the American Chemical Society, 135, 15667–15669.

    Article  CAS  Google Scholar 

  82. Poongavanam, V., Madala, P. K., Højland, T., & Veedu, R. N. (2014). Computational investigation of locked nucleic acid (LNA) nucleotides in the active sites of DNA polymerases by molecular docking simulations. PLoS One, 9, e102126.

    Article  CAS  Google Scholar 

  83. Wynne, S. A., Pinheiro, V. B., Holliger, P., & Leslie, A. G. (2013). Structures of an apo and a binary complex of an evolved archeal B family DNA polymerase capable of synthesising highly Cy-dye labelled DNA. PLoS One, 8, e70892.

    Article  CAS  Google Scholar 

  84. Ramsay, N., Jemth, A. S., Brown, A., Crampton, N., Dear, P., & Holliger, P. (2010). CyDNA: Synthesis and replication of highly cy-dye substituted DNA by an evolved polymerase. Journal of the American Chemical Society, 132, 5096–5104.

    Article  CAS  Google Scholar 

  85. Laos, R., Thomson, J. M., & Benner, S. A. (2014). DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides. Frontiers in Microbiology, 5, 565.

    Article  Google Scholar 

  86. Ishino, S., & Ishino, Y. (2014). DNA polymerases as useful reagents for biotechnology—The history of developmental research in the field. Frontiers in Microbiology, 5, 465.

    Article  Google Scholar 

  87. Kranaster, R., & Marx, A. (2010). Engineered DNA polymerases in biotechnology. ChemBioChem, 11, 2077–2084.

    Article  CAS  Google Scholar 

  88. Hansen, C. J., Wu, L., Fox, J. D., Arezi, B., & Hogrefe, H. H. (2011). Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide gamma-phosphate derivative. Nucleic Acids Research, 39, 1801–1810.

    Article  CAS  Google Scholar 

  89. Padilla, R., & Sousa, R. (1999). Efficient synthesis of nucleic acids heavily modified with non-canonical ribose 2′-groups using a mutantT7 RNA polymerase (RNAP). Nucleic Acids Research, 27, 1561–1563.

    Article  CAS  Google Scholar 

  90. Padilla, R., & Sousa, R. (2002). A Y639F/H784A T7 RNA polymerase double mutant displays superior properties for synthesizing RNAs with non-canonical NTPs. Nucleic Acids Research, 30, e138.

    Article  Google Scholar 

  91. Meyer, A.J., Ellefson, J.W. & Ellington, A.D. (2014) Library generation by gene shuffling. Current Protocols in Molecular Biology, 105, Unit 15.12. doi:10.1002/0471142727.mb1512s105.

  92. Cole, M. F., & Gaucher, E. A. (2011). Exploiting models of molecular evolution to efficiently direct protein engineering. Journal of Molecular Evolution, 72, 193–203.

    Article  CAS  Google Scholar 

  93. Chen, F., Gaucher, E. A., Leal, N. A., Hutter, D., Havemann, S. A., Govindarajan, S., et al. (2010). Reconstructed evolutionary adaptive paths give polymerases accepting reversible terminators for sequencing and SNP detection. Proceedings of the National Academy of Sciences of the United States of America, 107, 1948–1953.

    Article  CAS  Google Scholar 

  94. Matsuura, T., & Yomo, T. (2006). In vitro evolution of proteins. Journal of Bioscience and Bioengineering, 101, 449–456.

    Article  CAS  Google Scholar 

  95. Henry, K. A., Arbabi-Ghahroudi, M., & Scott, J. K. (2015). Beyond phage display: Non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Frontiers in Microbiology, 6, 755.

    Google Scholar 

  96. Pande, J., Szewczyk, M. M., & Grover, A. K. (2010). Phage display: Concept, innovations, applications and future. Biotechnology Advances, 28, 849–858.

    Article  CAS  Google Scholar 

  97. Tawfik, D. S., & Griffiths, A. D. (1998). Man-made cell-like compartments for molecular evolution. Nature Biotechnology, 16, 652–656.

    Article  CAS  Google Scholar 

  98. Loakes, D., & Holliger, P. (2009). Polymerase engineering: Towards the encoded synthesis of unnatural biopolymers. Chemical Communications, 31, 4619–4631.

    Article  CAS  Google Scholar 

  99. Pinheiro, V. B., Taylor, A. I., Cozens, C., Abramov, M., Renders, M., Zhang, S., et al. (2012). Synthetic genetic polymers capable of heredity and evolution. Science, 336, 341–344.

    Article  CAS  Google Scholar 

  100. Taylor, A. I., Pinheiro, V. B., Smola, M. J., Morgunov, A. S., Peak-Chew, S., Cozens, C., et al. (2015). Catalysts from synthetic genetic polymers. Nature, 518, 427–430.

    Article  CAS  Google Scholar 

  101. Avino, A., Fabrega, C., Tintore, M., & Eritja, R. (2012). Thrombin binding aptamer, more than a simple aptamer: Chemically modified derivatives and biomedical applications. Current Pharmaceutical Design, 18, 2036–2047.

    Article  CAS  Google Scholar 

  102. Peng, C. G., & Damha, M. J. (2007). G-quadruplex induced stabilization by 2′-deoxy-2′-fluoro-d-arabinonucleic acids (2′F-ANA). Nucleic Acids Research, 35, 4977–4988.

    Article  CAS  Google Scholar 

  103. Kolganova, N. A., Varizhuk, A. M., Novikov, R. A., Florentiev, V. L., Pozmogova, G. E., Borisova, O. F., et al. (2014). Anomeric DNA quadruplexes. Artificial DNA PNA XNA, 5, e28422.

    Article  Google Scholar 

  104. Davies, D. R., Gelinas, A. D., Zhang, C., Rohloff, J. C., Carter, J. D., O’Connell, D., et al. (2012). Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proceedings of the National Academy of Sciences of the United States of America, 109, 19971–19976.

    Article  CAS  Google Scholar 

  105. Gupta, S., Hirota, M., Waugh, S. M., Murakami, I., Suzuki, T., Muraguchi, M., et al. (2014). Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. Journal of Biological Chemistry, 289, 8706–8719.

    Article  CAS  Google Scholar 

  106. Scuotto, M., Rivieccio, E., Varone, A., Corda, D., Bucci, M., Vellecco, V., et al. (2015). Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative. Nucleic Acids Research, 43, 7702–7716.

    Article  CAS  Google Scholar 

  107. Rohloff, J. C., Fowler, C., Ream, B., Carter, J. D., Wardle, G., & Fitzwater, T. (2015). Practical synthesis of cytidine-5-carboxamide-modified nucleotide reagents. Nucleosides, Nucleotides & Nucleic Acids, 34, 180–198.

    Article  CAS  Google Scholar 

  108. Vaught, J. D., Bock, C., Carter, J., Fitzwater, T., Otis, M., Schneider, D., et al. (2010). Expanding the chemistry of DNA for in vitro selection. Journal of the American Chemical Society, 132, 4141–4151.

    Article  CAS  Google Scholar 

  109. Hollenstein, M. (2013). Deoxynucleoside triphosphates bearing histamine, carboxylic acid, and hydroxyl residues—synthesis and biochemical characterization. Organic & Biomolecular Chemistry, 11, 5162–5172.

    Article  CAS  Google Scholar 

  110. Hollenstein, M. (2012). Synthesis of deoxynucleoside triphosphates that include proline, urea, or sulfonamide groups and their polymerase incorporation into DNA. Chemistry, 18, 13320–13330.

    Article  CAS  Google Scholar 

  111. Shoji, A., Kuwahara, M., Ozaki, H., & Sawai, H. (2007). Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. Journal of the American Chemical Society, 129, 1456–1464.

    Article  CAS  Google Scholar 

  112. Battersby, T. R., Ang, D. N., Burgstaller, P., Jurczyk, S. C., Bowser, M. T., Buchanan, D. D., et al. (1999). Quantitative analysis of receptors for adenosine nucleotides obtained via in vitro selection from a library incorporating a cationic nucleotide analog. Journal of the American Chemical Society, 121, 9781–9789.

    Article  CAS  Google Scholar 

  113. Hollenstein, M., Hipolito, C. J., Lam, C. H., & Perrin, D. M. (2013). Toward the combinatorial selection of chemically modified DNAzyme RNase A mimics active against all-RNA substrates. ACS Combinatorial Science, 15, 174–182.

    Article  CAS  Google Scholar 

  114. Imaizumi, Y., Kasahara, Y., Fujita, H., Kitadume, S., Ozaki, H., Endoh, T., et al. (2013). Efficacy of base-modification on target binding of small molecule DNA aptamers. Journal of the American Chemical Society, 135, 9412–9419.

    Article  CAS  Google Scholar 

  115. Latham, J. A., Johnson, R., & Toole, J. J. (1994). The application of a modified nucleotide in aptamer selection: Novel thrombin aptamers containing 5-(1-pentynyl)-2′-deoxyuridine. Nucleic Acids Research, 22, 2817–2822.

    Article  CAS  Google Scholar 

  116. Holzberger, B., & Marx, A. (2009). Enzymatic synthesis of perfluoroalkylated DNA. Bioorganic & Medicinal Chemistry, 17, 3653–3658.

    Article  CAS  Google Scholar 

  117. Kuwahara, M., Suto, Y., Minezaki, S., Kitagata, R., Nagashima, J., & Sawai, H. (2006). Substrate property and incorporation accuracy of various dATP analogs during enzymatic polymerization using thermostable DNA polymerases. Nucleic Acids Symposium Series, 50, 31–32.

    Article  CAS  Google Scholar 

  118. Dadová, J., Orság, P., Pohl, R., Brázdová, M., Fojta, M., & Hocek, M. (2013). Vinylsulfonamide and acrylamide modification of DNA for cross-linking with proteins. Angewandte Chemie Int Ed, 52, 10515–10518.

    Article  CAS  Google Scholar 

  119. Raindlová, V., Pohl, R., & Hocek, M. (2012). Synthesis of aldehyde-linked nucleotides and DNA and their bioconjugations with lysine and peptides through reductive amination. Chemistry: A European Journal, 18, 4080–4087.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This publication was supported by Grant 14.604.21.0111 funded by Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Lapa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapa, S.A., Chudinov, A.V. & Timofeev, E.N. The Toolbox for Modified Aptamers. Mol Biotechnol 58, 79–92 (2016). https://doi.org/10.1007/s12033-015-9907-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9907-9

Keywords

Navigation