Skip to main content
Log in

Engineering Biological Approaches for Detection of Toxic Compounds: A New Microbial Biosensor Based on the Pseudomonas putida TtgR Repressor

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Environmental contamination by toxic organic compounds and antimicrobials is one of the causes for the recent surge of multidrug-resistant pathogenic bacteria. Monitoring contamination is therefore the first step in containment of antimicrobial resistance and requires the development of simple, sensitive, and quantitative tools that detect a broad spectrum of toxic compounds. In this study, we have engineered a new microbial biosensor based on the ttgR-regulated promoter that controls expression of the TtgABC extrusion efflux pump of Pseudomonas putida, coupled to a gfp reporter. The system was introduced in P. putida DOT-T1E, a strain characterized by its ability to survive in the presence of high concentrations of diverse toxic organic compounds. This whole-cell biosensor is capable to detect a wide range of structurally diverse antibiotics, as well as compounds such as toluene or flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gross, M. (2013). Antibiotics in crisis. Current Biology: CB, 23, R1063–R1065.

    Article  CAS  Google Scholar 

  2. CDC (2013) Antibiotic resistance threats in the United States. URL http://www.cdc.gov/drugresistance/threat-report-2013/.

  3. World Health Organization. (2012). The evolving threat of antimicrobial resistance: Options for action. Geneva: World Health Organization.

    Google Scholar 

  4. Korsrud, G. O., Boison, J. O., Nouws, J. F., & MacNeil, J. D. (1998). Bacterial inhibition tests used to screen for antimicrobial veterinary drug residues in slaughtered animals. Journal of AOAC International, 81, 21–24.

    CAS  Google Scholar 

  5. Schenck, F. J., & Callery, P. S. (1998). Chromatographic methods of analysis of antibiotics in milk. Journal of Chromatography A, 812, 99–109.

    Article  CAS  Google Scholar 

  6. Lee, H. J., Lee, M. H., Ryu, P. D., Lee, H., & Cho, M. H. (2001). Enzyme-linked immunosorbent assay for screening the plasma residues of tetracycline antibiotics in pigs. Journal of Veterinary Medical Science, 63, 553–556.

    Article  CAS  Google Scholar 

  7. Loomans, E. E., Van Wiltenburg, J., Koets, M., & Van Amerongen, A. (2003). Neamin as an immunogen for the development of a generic ELISA detecting gentamicin, kanamycin, and neomycin in milk. Journal of Agriculture and Food Chemistry, 51, 587–593.

    Article  CAS  Google Scholar 

  8. Su, L., Jia, W., Hou, C., & Lei, Y. (2011). Microbial biosensors: A review. Biosensor Bioelectronics, 26, 1788–1799.

    Article  CAS  Google Scholar 

  9. Turner, A. P. F., Karube, I., & Wilson, G. S. (Eds.). (1987). Biosensors fundamentals and applications. Oxford: Oxford University Press.

    Google Scholar 

  10. Blum, L. J., & Coulet, P. R. (Eds.). (1991). Biosensor principles and applications. New York: Marcel Dekker.

    Google Scholar 

  11. Mulchandani, A., & Rogers, K. R. (Eds.). (1998). Enzyme and microbial biosensors: Techniques and protocols. Totowa: Humanae Press.

    Google Scholar 

  12. Nikolelis, D., Krull, U., Wang, J., & Mascini, M. (Eds.). (1998). Biosensors for direct monitoring of environmental pollutants in field. London: Kluwer Academic.

    Google Scholar 

  13. Ramsay, G. E. (1998). Commercial biosensors: Applications to clinical, bioprocess and environmental samples. Chichester: Wiley.

    Google Scholar 

  14. Rogers, K. R., & Mulchandani, A. (1998). Affinity biosensors: Techniques and protocols. Totowa: Humanae Press.

    Book  Google Scholar 

  15. D’Souza, S. F. (2001). Microbial biosensors. Biosensors Bioelectronics, 16, 337–353.

    Article  Google Scholar 

  16. Weber, C. C., Link, N., Fux, C., Zisch, A. H., Weber, W., & Fussenegger, M. (2005). Broad-spectrum protein biosensors for class-specific detection of antibiotics. Biotechnology and Bioengineering, 89, 9–17.

    Article  CAS  Google Scholar 

  17. Sorensen, S. J., Burmolle, M., & Hansen, L. H. (2006). Making bio-sense of toxicity: New developments in whole-cell biosensors. Current Opinion in Biotechnology, 17, 11–16.

    Article  CAS  Google Scholar 

  18. Ramos, J. L., Duque, E., Huertas, M. J., & Haidour, A. (1995). Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. Journal of Bacteriology, 177, 3911–3916.

    CAS  Google Scholar 

  19. Mosqueda, G., & Ramos, J. L. (2000). A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1E is linked to the tod genes for toluene metabolism. Journal of Bacteriology, 182, 937–943.

    Article  CAS  Google Scholar 

  20. Rojas, A., Duque, E., Mosqueda, G., Golden, G., Hurtado, A., Ramos, J. L., & Segura, A. (2001). Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. Journal of Bacteriology, 183, 3967–3973.

    Article  CAS  Google Scholar 

  21. Segura, A., Godoy, P., van Dillewijn, P., Hurtado, A., Arroyo, N., Santacruz, S., & Ramos, J. L. (2005). Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. Journal of Bacteriology, 187, 5937–5945.

    Article  CAS  Google Scholar 

  22. Duque, E., Rodriguez-Herva, J. J., de la Torre, J., Dominguez-Cuevas, P., Munoz-Rojas, J., & Ramos, J. L. (2007). The RpoT regulon of Pseudomonas putida DOT-T1E and its role in stress endurance against solvents. Journal of Bacteriology, 189, 207–219.

    Article  CAS  Google Scholar 

  23. Woodcock, D. M., Crowther, P. J., Doherty, J., Jefferson, S., DeCruz, E., Noyer-Weidner, M., et al. (1989). Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Research, 17(9), 3469–3478.

    Article  CAS  Google Scholar 

  24. Lennox, E. S. (1955). Transduction of linked genetic characters of the host by bacteriophage P1. Virology, 2, 190–206.

    Article  Google Scholar 

  25. Karunakaran, R., Mauchline, T. H., Hosie, A. H., & Poole, P. S. (2005). A family of promoter probe vectors incorporating autofluorescent and chromogenic reporter proteins for studying gene expression in Gram-negative bacteria. Microbiology, 151, 3249–3256.

    Article  CAS  Google Scholar 

  26. Ramos, J. L., Duque, E., Gallegos, M. T., Godoy, P., Ramos-Gonzalez, M. I., Rojas, A., et al. (2002). Mechanisms of solvent tolerance in gram-negative bacteria. Annual Review of Microbiology, 56, 743–768.

    Article  CAS  Google Scholar 

  27. Teran, W., Felipe, A., Segura, A., Rojas, A., Ramos, J. L., & Gallegos, M. T. (2003). Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrobial Agents and Chemotherapy, 47, 3067–3072.

    Article  CAS  Google Scholar 

  28. Duque, E., Segura, A., Mosqueda, G., & Ramos, J. L. (2001). Global and cognate regulators control the expression of the organic solvent efflux pumps TtgABC and TtgDEF of Pseudomonas putida. Molecular Microbiology, 39, 1100–1106.

    Article  CAS  Google Scholar 

  29. Teran, W., Krell, T., Ramos, J. L., & Gallegos, M. T. (2006). Effector-repressor interactions, binding of a single effector molecule to the operator-bound TtgR homodimer mediates derepression. Journal of Biological Chemistry, 17, 7102–7109.

    Article  Google Scholar 

  30. Guazzaroni, M. E., Teran, W., Zhang, X., Gallegos, M. T., & Ramos, J. L. (2004). TtgV bound to a complex operator site represses transcription of the promoter for the multidrug and solvent extrusion TtgGHI pump. Journal of Bacteriology, 186, 2921–2927.

    Article  CAS  Google Scholar 

  31. Peleg, A. Y., & Hooper, D. C. (2010). Hospital-acquired infections due to gram-negative bacteria. New England Journal of Medicine, 362, 1804–1813.

    Article  CAS  Google Scholar 

  32. Ball, P. (2000). Quinolone generations: Natural history or natural selection? Journal of Antimicrobial Chemotherapy, 46(Suppl T1), 17–24.

    Article  CAS  Google Scholar 

  33. Falagas, M. E., Grammatikos, A. P., & Michalopoulos, A. (2008). Potential of old-generation antibiotics to address current need for new antibiotics. Expert Review of Anti-infective Therapy, 6, 593–600.

    Article  Google Scholar 

  34. Alguel, Y., Meng, C., Teran, W., Krell, T., Ramos, J. L., Gallegos, M. T., & Zhang, X. (2007). Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. Journal of Molecular Biology, 369, 829–840.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to M.D. Jesús Villar for the information provided on the antibiotics most commonly used in Hospitals against Pseudomonas. We thank Marisa Cañadas-Garre and Virgen de las Nieves Hospital for providing the antibiotics of clinical use. This work was supported by Spanish Ministry of Economy and Competitiveness, National Programme for Recruitment and Incorporation of Human Resources, Subprogramme: Ramon y Cajal RYC-2009-04570 and grant P11-CVI-7391 from Junta de Andalucía and EFDR.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María Fernández-Escamilla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12033_2015_9849_MOESM1_ESM.tif

Supplementary material 1 (TIFF 5954 kb). Fig. S1. Toxic respond to toluene of the biosensor, via GFP expression, under UV-light illumination. A) In absence of toluene; B) In the presence of vapour phase of toluene

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa-Urgel, M., Serrano, L., Ramos, J.L. et al. Engineering Biological Approaches for Detection of Toxic Compounds: A New Microbial Biosensor Based on the Pseudomonas putida TtgR Repressor. Mol Biotechnol 57, 558–564 (2015). https://doi.org/10.1007/s12033-015-9849-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9849-2

Keywords

Navigation