Skip to main content
Log in

Construction of 2,4,6-Trinitrotoluene Biosensors with Novel Sensing Elements from Escherichia coli K-12 MG1655

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Detection of 2,4,6-trinitrotoluene (TNT) has been extensively studied since it is a common explosive filling for landmines, posing significant threats to the environment and human safety. The rapid advances in synthetic biology give new hope to detect such toxic and hazardous compounds in a more sensitive and safe way. Biosensor construction anticipates finding sensing elements able to detect TNT. As TNT can induce some physiological responses in E. coli, it may be useful to define the sensing elements from E. coli to detect TNT. An E. coli MG1655 genomic promoter library containing nearly 5,400 elements was constructed. Five elements, yadG, yqgC, aspC, recE, and topA, displayed high sensing specificity to TNT and its indicator compounds 1,3-DNB and 2,4-DNT. Based on this, a whole cell biosensor was constructed using E. coli, in which green fluorescent protein was positioned downstream of the five sensing elements via genetic fusion. The threshold value, detection time, EC200 value, and other aspects of five sensing elements were determined and the minimum responding concentration to TNT was 4.75 mg/L. According to the synthetic biology, the five sensing elements enriched the reservoir of TNT-sensing elements, and provided a more applicable toolkit to be applied in genetic routes and live systems of biosensors in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berthe-Corti, L., Jacobi, H., Kleihauer, S., & Witte, I. (1998). Cytotoxicity and mutagenicity of a 2,4,6-trinitrotoluene (TNT) and hexogen contaminated soil in S. typhimurium and mammalian cells. Chemosphere, 37, 209–218.

    Article  CAS  PubMed  Google Scholar 

  2. Reddy, G., Reddy, T. V., Choudhury, H., Daniel, F. B., & Leach, G. J. (1997). Assessment of environmental hazards of 1,3,5-trinitrobenzene. Journal of Toxicology and Environment Health, 52, 447–460.

    Article  CAS  Google Scholar 

  3. U.S. Environmental Protection Agency. (1996). Innovative treatment technologies: Annual status report (8th ed.). Washington, DC: U.S. Environmental Protection Agency. Retrieved Novermber 8, 1996 from http://nepis.epa.gov/Exe/ZyNET.exe/10002Y79.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1995+Thru+1999&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C95thru99%5CTxt%5C00000004%5C10002Y79.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=p%7Cf&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL.

  4. Frische, T. (2002). Screening for soil toxicity and mutagenicity using luminescent bacteria—A case study of the explosive 2,4,6-trinitrotoluene (TNT). Ecotoxicology and Environmental Safety, 51(2), 133–144.

    Article  CAS  PubMed  Google Scholar 

  5. Resolution adopted by the General Assembly on 8 December 2005 on the report of the Special Political and Decolonization Committee (Fourth Committee) (A/60/473), sixtieth session Agenda item 27, Distr.: General 18 January 2006.

  6. Benner, S. A., & Sismour, A. M. (2005). Synthetic biology. Nature Reviews Genetics, 6(7), 533–543.

    Article  CAS  PubMed  Google Scholar 

  7. Leedjarv, A., Ivask, A., Virta, M., & Kahru, A. (2006). Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors. Chemosphere, 11, 1910–1919.

    Article  Google Scholar 

  8. Magrisso, S., Erel, Y., & Belkin, S. (2008). Microbial reporters of metal bioavailability. Microbial Biotechnology, 1, 320–330.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Robin, T., & van der Meer, J. R. (2008). Bacterial biosensors for measuring availability of environmental pollutants. Sensors, 8, 4062–4080.

    Article  Google Scholar 

  10. Trang, P. T. K., Berg, M., Viet, P. H., Mui, N. V., & van der Meer, J. R. (2005). Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environmental Science and Technology, 19, 7625–7630.

    Article  Google Scholar 

  11. Werlen, C., Jaspers, M. C. M., & van der Meer, J. R. (2004). Measurement of biologically available naphthalene in gas, and aqueous phases by use of a Pseudomonas putida biosensor. Applied and Environment Microbiology, 70, 43–51.

    Article  CAS  Google Scholar 

  12. Meighen, E. A., & Szittner, R. B. (1992). Multiple repetitive elements andorganization of the lux operons of luminescent terrestrial bacteria. Journal of Bacteriology, 174, 5371–5381.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Kurvet, I., Ivask, A., Bondarenko, O., Sihtmäe, M., & Kahru, A. (2011). LuxCDABE-transformed constitutively bioluminescent Escherichia coli for toxicity screening: Comparison with naturally luminous Vibrio fischeri. Sensors, 11(8), 7865–7878.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. van der Meer, J. R., & Belkin, S. (2010). Where microbiology meets microengineering: Design and applications of reporter bacteria. Nature Reviews Microbiology, 8(7), 511–522.

    Article  CAS  PubMed  Google Scholar 

  15. Burlage, R., Youngblood, T., & Lamothe, D. (1998). Bioreporter bacteria for landmine detection. RNL report/CP-96972. Oak Ridge: Oak Ridge National Laboratory.

  16. Burlage, R., Patek, D., & Everman, K. (1999). Method for detection of buried explosives using a biosensor. US Patent 5:972,638.

  17. Kyoko, T., Sumio, G., Kiwao, K., Masana, H., Takao, I., & Manabu, S. (2001). Modification of umu Test using the bioluminescent bacteria and application to sediments and soils. Journals in Environmental Chemistry, 11(4), 841–848.

    Article  Google Scholar 

  18. Garmendia, J., De Las Heras, A., Galvão, T., & De Lorenzo, V. (2008). Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. Microbial Biotechnology, 1(3), 236–246.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. González-Pérez, M., Van Dillewijn, P., Wittich, R., & Ramos, J. (2007). Escherichia coli has multiple enzymes that attack TNT and release nitrogen for growth. Environmental Microbiology, 9(6), 1535–1540.

    Article  PubMed  Google Scholar 

  20. Behzadian, F., Barjeste, H., Hosseinkhani, S., & Zarei, A. R. (2012). Zarei construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds. Current Microbiology, 62, 690–696.

    Article  Google Scholar 

  21. Sharon, Y., Chaim, L., Rachel, R., Neta, B., Yaara, M., & Shimshon, B. (2014). Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Applied Microbiology and Biotechnology, 98(2), 885–895.

    Article  Google Scholar 

  22. Miller, W., Leveau, J., & Lindow, S. (2000). Improved Gfp and inaZ broad-host-range promoter-probe vectors. Molecular Plant-Microbe Interactions, 13, 1243–1250.

    Article  CAS  PubMed  Google Scholar 

  23. Lerner, C. G., & Inouye, M. (1990). Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Research, 18, 4631.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wang, R. F., & Kushner, S. R. (1991). Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene, 100, 195–199.

    Article  CAS  PubMed  Google Scholar 

  25. Belkin, S., Smulski, D., Dadon, S., Vollmer, A., Van Dyk, T., & Larossa, R. (1997). A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants. Water Research, 31(12), 3009–3016.

    Article  CAS  Google Scholar 

  26. Belkin, S. (1998). A panel of stress-responsive luminous bacteria for monitoring wastewater toxicity. Methods in Molecular Biology, 102, 247–258.

    CAS  PubMed  Google Scholar 

  27. Nishino, S. F., Spain, J. C., Lenke, H., et al. (1999). Mineralizat ion of 2,4- and 2,6-DNT in soil slurries. Environmental Science and Technology, 33, 1060–1064.

    Article  CAS  Google Scholar 

  28. Habib, M. (2007). Controlled biological and biomimetic systems for landmine detection. Biosensors & Bioelectronics, 23(1), 1–18.

    Article  CAS  Google Scholar 

  29. Gillen, J. R., Willis, D. K., & Clark, A. J. (1981). Genetic analysis of the RecE pathway of genetic recombination in Escherichia coli K-12. Journal of Bacteriology, 145, 521–532.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Yang, Y., & Fix, D. (2006). Genetic analysis of the anti-mutagenic effect of genistein in Escherichia coli. Mutation Research, 600(1–2), 193–206.

    Article  CAS  PubMed  Google Scholar 

  31. Tse-Dinh, Y.-C., & Wang, J. C. (1986). Complete nucleotide sequence of the topA gene encoding Escherichia coli DNA topoisomerase I. Journal of Molecular Biology, 191(3), 321–331.

    Article  CAS  PubMed  Google Scholar 

  32. Rao, M. R., & Halfhill, M. D. (2009). Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes. Functional & Integrative Genomics, 9(4), 537–547.

    Article  CAS  Google Scholar 

  33. Pomeranz, M. C. (2005). ABC promoter up regulation using TNT and Kangenyacin. University of Tennessee Honors Thesis Projects. RDX and TNT: Identification of the required target genes. Functional & Integrative Genomics, 9(4), 537–547.

  34. Seiki, K., Sachiko, O., Tomoko, O., Hideyuki, O., & Hiroyuki, K. (1990). Aspartate aminotransferase of Escherichia coli: Nucleotide sequence of the aspc gene. Journal of Biochemistry, 97(4), 1259–1262.

    Google Scholar 

  35. Martin, W., Ulrich, T., Nicole, R., Christoph, K., & Stefan, S. (2012). Future security. Communications in Computer and Information Science, 318, 432–437.

    Google Scholar 

  36. De Las, Heras. A., Carreño, C., & De Lorenzo, V. (2008). Stable implantation of orthogonal sensor circuits in gram-negative bacteria for environmental release. Environmental Microbiology, 10(12), 3305–3316.

    Article  Google Scholar 

  37. Gibbs, W. W. (2004). Synthetic life. Scientific American, 290(5), 48–55.

    Article  Google Scholar 

  38. Endy, D. (2005). Foundations for engineering biology. Nature, 438, 449–453.

    Article  CAS  PubMed  Google Scholar 

  39. Blattner, F., Plunkett, G., Bloch, C., Perna, N., Burland, V., Riley, M., et al. (1997). Thecomplete genome sequence of Escherichia coli K-12. Science, 277(5331), 1453–1462.

    Article  CAS  PubMed  Google Scholar 

  40. Grant, S., Jessee, J., Bloom, F., & Hanahan, D. (1990). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylationrestriction mutants. Proceedings of the National Academy of Sciences of the United States of America, 87(12), 4645–4649.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Wang Hengliang (Beijing Institute of Bioengineering) for help and guidance in this study. This study was funded by the synthetic biology project of Chinese National High Technology Research and Development Program (863 Program). Project Number 2012AA02A706.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Liu or Huipeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Kan, N., Wang, W. et al. Construction of 2,4,6-Trinitrotoluene Biosensors with Novel Sensing Elements from Escherichia coli K-12 MG1655. Cell Biochem Biophys 72, 417–428 (2015). https://doi.org/10.1007/s12013-014-0481-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0481-8

Keywords

Navigation