Skip to main content

Advertisement

Log in

Prokaryotic Expression and Purification of Soluble Goldfish Tgf2 Transposase with Transposition Activity

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Goldfish Tgf2 transposon of Hobo/Activator/Tam3 (hAT) family can mediate gene insertion in a variety of aquacultural fish species by transposition; however, the protein structure of Tgf2 transposase (TPase) is still poorly understood. To express the goldfish Tgf2 TPase in Escherichia coli, the 2061-bp coding region was cloned into pET-28a(+) expression vector containing an N-terminal (His)6-tag. The pET-28a(+)-Tgf2 TPase expression cassette was transformed into Rosetta 1 (DE3) E. coli lines. A high yield of soluble proteins with molecular weight of ~80 kDa was obtained by optimized cultures including low-temperature (22 °C) incubation and early log phase (OD600 = 0.3–0.4) induction. Mass spectrometry analysis following trypsin digestion of the recombinant proteins confirmed a Tgf2 TPase component in the eluate of Ni2+-affinity chromatography. When co-injected into 1–2 cell embryos with a donor plasmid harboring a Tgf2 cis-element, the prokaryotic expressed Tgf2 TPase can mediate high rates (45 %) of transposition in blunt snout bream (Megalobrama amblycephala). Transposition was proved by the presence of 8-bp random direct repeats at the target sites, which is the signature of hAT family transposons. Production of the Tgf2 Tpase protein in a soluble and active form not only allows further investigation of its structure, but provides an alternative tool for fish transgenesis and insertional mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang, C. R., Burns, K. H., & Boeke, J. D. (2012). Active transposition in genomes. Annual Review of Genetics, 46, 651–675.

    Article  CAS  Google Scholar 

  2. de Boer, J. G., Yazawa, R., Davidson, W. S., & Koop, B. F. (2007). Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genomics, 8, 422.

    Article  Google Scholar 

  3. Feschotte, C., & Pritham, E. J. (2007). DNA transposons and the evolution of eukaryotic genomes. Annual Review of Genetics, 41, 331–368.

    Article  CAS  Google Scholar 

  4. Benjak, A., Forneck, A., & Casacuberta, J. M. (2008). Genome-wide analysis of the “cut-and-paste” transposons of grapevine. PLoS ONE, 3, e3107.

    Article  Google Scholar 

  5. Zhang, J., & Peterson, T. (2004). Transposition of reversed Ac element ends generates chromosome rearrangements in maize. Genetics, 167, 1929–1937.

    Article  CAS  Google Scholar 

  6. Kawakami, K., Imanaka, K., Itoh, M., & Taira, M. (2004). Excision of the Tol2 transposable element of the medaka fish Oryzias latipes in Xenopus laevis and Xenopus tropicalis. Gene, 338, 93–98.

    Article  CAS  Google Scholar 

  7. Kawakami, K., & Shima, A. (1999). Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene, 240, 239–244.

    Article  CAS  Google Scholar 

  8. Mates, L., Chuah, M. K., Belay, E., Jerchow, B., Manoj, N., Acosta-Sanchez, A., et al. (2009). Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nature Genetics, 41, 753–761.

    Article  CAS  Google Scholar 

  9. Kawakami, K. (2007). Tol2: a versatile gene transfer vector in vertebrates. Genome Biology, 8(Suppl 1), S7.

    Article  Google Scholar 

  10. Nagayoshi, S., Hayashi, E., Abe, G., Osato, N., Asakawa, K., Urasaki, A., et al. (2008). Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development, 135, 159–169.

    Article  CAS  Google Scholar 

  11. He, X., Li, J., Long, Y., Song, G., Zhou, P., Liu, Q., et al. (2013). Gene transfer and mutagenesis mediated by Sleeping Beauty transposon in Nile tilapia (Oreochromis niloticus). Transgenic Research, 22, 913–924.

    Article  CAS  Google Scholar 

  12. Furushima, K., Jang, C. W., Chen, D. W., Xiao, N., Overbeek, P. A., & Behringer, R. R. (2012). Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat. Genetics, 192, 1235–1248.

    Article  CAS  Google Scholar 

  13. Geurts, A. M., Wilber, A., Carlson, C. M., Lobitz, P. D., Clark, K. J., Hackett, P. B., et al. (2006). Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon. BMC Biotechnology, 6, 30.

    Article  Google Scholar 

  14. Froschauer, A., Sprott, D., Gerwien, F., Henker, Y., Rudolph, F., Pfennig, F., et al. (2012). Effective generation of transgenic reporter and gene trap lines of the medaka (Oryzias latipes) using the Ac/Ds transposon system. Transgenic Research, 21, 149–162.

    Article  CAS  Google Scholar 

  15. Clark, K. J., Geurts, A. M., Bell, J. B., & Hackett, P. B. (2004). Transposon vectors for gene-trap insertional mutagenesis in vertebrates. Genesis, 39, 225–233.

    Article  CAS  Google Scholar 

  16. Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., & Mishina, M. (2004). A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Developmental Cell, 7, 133–144.

    Article  CAS  Google Scholar 

  17. Cheng, L. D., Jiang, X. Y., Tian, Y. M., Chen, J., & Zou, S. M. (2014). The goldfish hAT-family transposon Tgf2 is capable of autonomous excision in zebrafish embryos. Gene, 536, 74–78.

    Article  CAS  Google Scholar 

  18. Clark, K. J., Carlson, D. F., Leaver, M. J., Foster, L. K., & Fahrenkrug, S. C. (2009). Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells. Nucleic Acids Research, 37, 1239–1247.

    Article  CAS  Google Scholar 

  19. Jiang, X. Y., Du, X. D., Tian, Y. M., Shen, R. J., Sun, C. F., & Zou, S. M. (2012). Goldfish transposase Tgf2 presumably from recent horizontal transfer is active. The FASEB Journal, 26, 2743–2752.

    Article  CAS  Google Scholar 

  20. Zou, S. M., Du, X. D., Yuan, J., & Jiang, X. Y. (2010). Cloning of goldfish hAT transposon Tgf2 and its structure. Hereditas, 32, 1263–1268.

    CAS  Google Scholar 

  21. Zhang, L., Sun, C., Ye, X., Zou, S., Lu, M., Liu, Z., et al. (2014). Characterization of four heat-shock protein genes from Nile tilapia (Oreochromis niloticus) and demonstration of the inducible transcriptional activity of Hsp70 promoter. Fish Physiology and Biochemistry, 40, 221–233.

    Article  CAS  Google Scholar 

  22. Guo, X. M., Huang, C. X., Shen, R. J., Jiang, X. Y., Chen, J., & Zou, S. M. (2013). Insertion efficiency of Tgf2 transposon in the genome of Megalobrama amblycephala. Hereditas, 35, 999–1006.

    Article  CAS  Google Scholar 

  23. Yan, X., Zhong, S. S., Peng, X., Zou, S. M., & Sun, X. W. (2014). Study on transgenic efficiency of Fst1 gene element mediated by Tgf2 transposon in common carp. Journal of Shanghai Ocean University, 23, 1–7.

    Article  CAS  Google Scholar 

  24. Tafalla, C., Estepa, A., & Coll, J. M. (2006). Fish transposons and their potential use in aquaculture. Journal of Biotechnology, 123, 397–412.

    Article  CAS  Google Scholar 

  25. Shibano, T., Takeda, M., Suetake, I., Kawakami, K., Asashima, M., Tajima, S., et al. (2007). Recombinant Tol2 transposase with activity in Xenopus embryos. FEBS Letters, 581, 4333–4336.

    Article  CAS  Google Scholar 

  26. Nesmelova, I. V., & Hackett, P. B. (2010). DDE transposases: Structural similarity and diversity. Advanced Drug Delivery Reviews, 62, 1187–1195.

    Article  CAS  Google Scholar 

  27. Zhang, L., Dawson, A., & Finnegan, D. J. (2001). DNA-binding activity and subunit interaction of the mariner transposase. Nucleic Acids Research, 29, 3566–3575.

    Article  CAS  Google Scholar 

  28. Zou, S. M., Li, S., Cai, W., Zhao, J., & Yang, H. (2004). Establishment of fertile tetraploid population of blunt snout bream (Megalobrama amblycephala). Aquaculture, 238, 155–164.

    Article  Google Scholar 

  29. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). NewYork: Cold Spring Harbor, USA.

    Google Scholar 

  30. Dumon-Seignovert, L., Cariot, G., & Vuillard, L. (2004). The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expression and Purification, 37, 203–206.

    Article  CAS  Google Scholar 

  31. Sahdev, S., Khattar, S. K., & Saini, K. S. (2008). Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Molecular and Cellular Biochemistry, 307, 249–264.

    Article  CAS  Google Scholar 

  32. San-Miguel, T., Perez-Bermudez, P., & Gavidia, I. (2013). Production of soluble eukaryotic recombinant proteins in is favoured in early log-phase cultures induced at low temperature. SpringerPlus, 2, 89.

    Article  Google Scholar 

  33. Qing, G., Ma, L. C., Khorchid, A., Swapna, G. V., Mal, T. K., Takayama, M. M., et al. (2004). Cold-shock induced high-yield protein production in Escherichia coli. Nature Biotechnology, 22, 877–882.

    Article  CAS  Google Scholar 

  34. Lamb-Palmer, N. D., Singh, M., Dalton, J. P., & Singh, J. (2013). Prokaryotic expression and purification of soluble maize Ac transposase. Molecular Biotechnology, 54, 685–691.

    Article  CAS  Google Scholar 

  35. Trubitsyna, M., Morris, E. R., Finnegan, D. J., & Richardson, J. M. (2014). Biochemical characterization and comparison of two closely related active mariner transposases. Biochemistry, 53, 682–689.

    Article  CAS  Google Scholar 

  36. Zou, S. M., & Jiang, X. Y. (2011). Transposon-mediated transgenesis and gene trap strategies in fish. In X. Sun & P. Xu (Eds.), Progress in aquaculture genome technology and research (pp. 188–202). Beijing, China: Ocean Press.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National High Technology Research and Development Program of China (863 Program) (2011AA100403) and the National Science Foundation of China (Nos. 31201760 and 31272633).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Ming Zou or Xia-Yun Jiang.

Additional information

Hai-Li Xu and Xiao-Dan Shen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, HL., Shen, XD., Hou, F. et al. Prokaryotic Expression and Purification of Soluble Goldfish Tgf2 Transposase with Transposition Activity. Mol Biotechnol 57, 94–100 (2015). https://doi.org/10.1007/s12033-014-9805-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9805-6

Keywords

Navigation