Skip to main content
Log in

Gene transfer and mutagenesis mediated by Sleeping Beauty transposon in Nile tilapia (Oreochromis niloticus)

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The success of gene transfer has been demonstrated in many of vertebrate species, whereas the efficiency of producing transgenic animals remains pretty low due to the random integration of foreign genes into a recipient genome. The Sleeping Beauty (SB) transposon is able to improve the efficiency of gene transfer in zebrafish and mouse, but its activity in tilapia (Oreochromis niloticus) has yet to be characterized. Herein, we demonstrate the potential of using the SB transposon system as an effective tool for gene transfer and insertional mutagenesis in tilapia. A transgenic construct pT2/tiHsp70-SB11 was generated by subcloning the promoter of tilapia heat shock protein 70 (tiHsp70) gene, the SB11 transposase gene and the carp β-actin gene polyadenylation signal into the second generation of SB transposon. Transgenic tilapia was produced by microinjection of this construct with in vitro synthesized capped SB11 mRNA. SB11 transposon was detected in 28.89 % of founders, 12.9 % of F1 and 43.75 % of F2. Analysis of genomic sequences flanking integrated transposons indicates that this transgenic tilapia line carries two copies of SB transposon, which landed into two different endogenous genes. Induced expression of SB11 gene after heat shock was detected using reverse transcription PCR in F2 transgenic individuals. In addition, the Cre/loxP system was introduced to delete the SB11 cassette for stabilization of gene interruption and bio-safety. These findings suggest that the SB transposon system is active and can be used for efficient gene transfer and insertional mutagenesis in tilapia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amal M, Zamri-Saad M (2011) Streptococcosis in Tilapia (Oreochromis niloticus): a review. Pertanika J Trop Agric Sci 34(2):195–206

    Google Scholar 

  • Brem G, Brenig B, Horstgen-Schwark G, Winnacker EL (1988) Gene transfer in tilapia (Oreochromis niloticus). Aquaculture 68(3):209–219

    Article  CAS  Google Scholar 

  • Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172(1):156–169

    Article  PubMed  CAS  Google Scholar 

  • Chen TT (1995) Transgenic fish and aquaculture. In: Bagarinao TU, Flores EEC (eds) Towards sustainable aquaculture in Southeast Asia and Japan. SEAFDEC Aquaculture Department, Illoilo, Philippines, pp 81–89

  • Chourrout D, Guyomard R, Houdebine LM (1986) High-efficiency gene-transfer in rainbow-trout (Salmo-Gairdneri Rich) by microinjection into egg cytoplasm. Aquaculture 51(2):143–150

    Article  CAS  Google Scholar 

  • Clark KJ, Geurts AM, Bell JB, Hackett PB (2004) Transposon vectors for gene-trap insertional mutagenesis in vertebrates. Genesis 39(4):225–233. doi:10.1002/Gene.20049

    Article  PubMed  CAS  Google Scholar 

  • Cnaani A, Gall GAE, Hulata G (2000) Cold tolerance of tilapia species and hybrids. Aquacult Int 8(4):289–298

    Article  Google Scholar 

  • Collas P (1998) Modulation of plasmid DNA methylation and expression in zebrafish embryos. Nucleic Acids Res 26(19):4454–4461

    Article  PubMed  CAS  Google Scholar 

  • Collier LS, Largaespada DA (2007) Transposons for cancer gene discovery: Sleeping Beauty and beyond. Genome biology 8. doi:10.1186/Gb-2007-8-S1-S15

  • Collier LS, Carlson CM, Ravimohan S, Dupuy AJ, Largaespada DA (2005) Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436(7048):272–276. doi:10.1038/Nature03681

    Article  PubMed  CAS  Google Scholar 

  • Cui Z, Geurts AM, Liu G, Kaufman CD, Hackett PB (2002) Structure-function analysis of the inverted terminal repeats of the Sleeping Beauty transposon. J Mol Biol 318(5):1221–1235

    Article  PubMed  CAS  Google Scholar 

  • Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SC (2003) Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 263(2):191–202. doi:10.1016/S0012-1606(03)00439-1

    Article  PubMed  CAS  Google Scholar 

  • Dobie K, Mehtali M, McClenaghan M, Lathe R (1997) Variegated gene expression in mice Trends in genetics. TIG 13(4):127–130

    Article  PubMed  CAS  Google Scholar 

  • Dunham RA, Eash J, Askins J, Townes TM (1987) Transfer of the metallothionein human growth-hormone fusion gene into channel catfish. T Am Fish Soc 116(1):87–91

    Article  CAS  Google Scholar 

  • Dupuy AJ, Clark K, Carlson CM, Fritz S, Davidson AE, Markley KM, Finley K, Fletcher CF, Ekker SC, Hackett PB, Horn S, Largaespada DA (2002) Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA 99(7):4495–4499. doi:10.1073/pnas.062630599

    Article  PubMed  CAS  Google Scholar 

  • Farlora R, Kobayashi S, Franca L, Batlouni S, Lacerda S, Yoshizaki G (2009) Expression of GFP in transgenic tilapia under the control of the medaka β-actin promoter: establishment of a model system for germ cell transplantation. Anim Reprod 6(3):450–459

    Google Scholar 

  • Fiol DF, Sanmarti E, Lim AH, Kultz D (2011) A novel GRAIL E3 ubiquitin ligase promotes environmental salinity tolerance in euryhaline tilapia. Biochim Biophys Acta 4:439–445

    Article  Google Scholar 

  • Fletcher GL, Shears MA, King MJ, Davies PL, Hew CL (1988) Evidence for antifreeze protein gene-transfer in Atlantic Salmon (Salmo-Salar). Can J Fish Aquat Sci 45(2):352–357

    Article  CAS  Google Scholar 

  • Fujimura K, Kocher TD (2011) Tol2-mediated transgenesis in tilapia (Oreochromis niloticus). Aquaculture 319(3–4):342–346. doi:10.1016/j.aquaculture.2011.07.021

    Article  PubMed  CAS  Google Scholar 

  • Grabher C, Henrich T, Sasado T, Arenz A, Wittbrodt J, Furutani-Seiki M (2003) Transposon-mediated enhancer trapping in medaka. Gene 322:57–66

    Article  PubMed  CAS  Google Scholar 

  • Gupta MV, Acosta BO (2004) A review of global tilapia farming practices. Aquac Asia 9:7–12

    Google Scholar 

  • Henikoff S (1998) Conspiracy of silence among repeated transgenes. Bioessays 20(7):532–535

    Article  PubMed  CAS  Google Scholar 

  • Hinegard R, Rosen DE (1972) Cellular DNA content and evolution of teleostean fish. Am Nat 106(951):621

    Article  Google Scholar 

  • Hyatt TM, Ekker SC (1999) Vectors and techniques for ectopic gene expression in zebrafish. Methods Cell Biol 59:117–126

    Article  PubMed  CAS  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4):501–510

    Article  PubMed  CAS  Google Scholar 

  • Ivics Z, Kaufman CD, Zayed H, Miskey C, Walisko O, Izsvak Z (2004) The Sleeping Beauty transposable element: evolution, regulation and genetic applications. Curr Issues Mol Biol 6:43–55

    PubMed  CAS  Google Scholar 

  • Jakobsen JE, Li J, Kragh PM, Moldt B, Lin L, Liu Y, Schmidt M, Winther KD, Schyth BD, Holm IE, Vajta G, Bolund L, Callesen H, Jorgensen AL, Nielsen AL, Mikkelsen JG (2010) Pig transgenesis by Sleeping Beauty DNA transposition. Transgenic Res 20(3):533–545. doi:10.1007/s11248-010-9438-x

    Article  PubMed  Google Scholar 

  • Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7. doi:10.1186/gb-2007-8-s1-s7

    Article  PubMed  Google Scholar 

  • Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7(1):133–144. doi:10.1016/j.devcel.2004.06.005

    Article  PubMed  CAS  Google Scholar 

  • Khoo HW, Ang LH, Lim HB, Wong KY (1992) Sperm cells as vectors for introducing foreign DNA into zebrafish. Aquaculture 107(1):1–19

    Article  CAS  Google Scholar 

  • Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H (1996) Transposable element in fish. Nature 383(6595):30. doi:10.1038/383030a0

    Article  PubMed  CAS  Google Scholar 

  • Li YH, Bai JJ, Jian Q, Ye X, Lao HH, Li XH, Luo JR, Liang XF (2003) Expression of common carp growth hormone in the yeast Pichia pastoris and growth stimulation of juvenile tilapia (Oreochromis niloticus). Aquaculture 216(1–4):329–341

    Article  CAS  Google Scholar 

  • Li SF, Tang SJ, Cai WQ (2010) RAPD-SCAR Markers for genetically improved NEW GIFT Nile Tilapia (Oreochromis niloticus niloticus L.) and their application in strain identification. Zoologic res 31(2):147–153. doi:10.3724/SP.J.1141.2010.02147

    Google Scholar 

  • Linney E, Hardison NL, Lonze BE, Lyons S, DiNapoli L (1999) Transgene expression in zebrafish: a comparison of retroviral-vector and DNA-injection approaches. Dev Biol 213(1):207–216

    Article  PubMed  CAS  Google Scholar 

  • Maclean N, Rahman MA, Sohm F, Hwang G, Iyengar A, Ayad H, Smith A, Farahmand H (2002) Transgenic tilapia and the tilapia genome. Gene 295(2):265–277

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L (1991) Heterochromatic features of an 11-megabase transgene in brain cells. Proc Natl Acad Sci USA 88(3):1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Marris E (2010) Transgenic fish go large. Nature 467(7313):259. doi:10.1038/467259a

    Article  PubMed  CAS  Google Scholar 

  • Martinez R, Estrada MP, Berlanga J, Guillen I, Hernandez O, Cabrera E, Pimentel R, Morales R, Herrera F, Morales A, Pina TC, Abad Z, Sanchez V, Melamed P, Lleonart R, delaFuente J (1996) Growth enhancement in transgenic tilapia by ectopic expression of tilapia growth hormone. Mol Mar Biol Biotech 5(1):62–70

    CAS  Google Scholar 

  • Martinez R, Juncal J, Zaldivar C, Arenal A, Guillen I, Morera V, Carrillo O, Estrada M, Morales A, Estrada M (2000) Growth efficiency in transgenic tilapia (Oreochromis sp.) carrying a single copy of an homologous cDNA growth hormone. Biochem Biophys Res Commun 267(1):466–472

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Di Martino E, Martial JA, Muller M (2001) Heat shock stimulation of a tilapia heat shock protein 70 promoter is mediated by a distal element. Biochem J 356(Pt 2):353–359

    Article  PubMed  CAS  Google Scholar 

  • Niemann H, Petersen B, Kues W, Carnwath JW (2012) Recent progress in the production of transgenic pigs. Xenotransplantation 19(1):13

    Article  Google Scholar 

  • Overbeek PA, Chepelinsky AB, Khillan JS, Piatigorsky J, Westphal H (1985) Lens-specific expression and developmental regulation of the bacterial chloramphenicol acetyltransferase gene driven by the murine alpha A-crystallin promoter in transgenic mice. Proc Natl Acad Sci USA 82(23):7815–7819

    Article  PubMed  CAS  Google Scholar 

  • Ozato K, Kondoh H, Inohara H, Iwamatsu T, Wakamatsu Y, Okada TS (1986) Production of transgenic fish—introduction and expression of chicken delta-crystallin gene in medaka embryos. Cell Differ Dev 19(4):237–244

    Article  CAS  Google Scholar 

  • Pohajdak B, Mansour M, Hrytsenko O, Conlon JM, Dymond LC, Wright JR Jr (2004) Production of transgenic tilapia with Brockmann bodies secreting [desThrB30] human insulin. Transgenic Res 13(4):313–323

    Article  PubMed  CAS  Google Scholar 

  • Rahman MA, Maclean N (1992) Production of Transgenic Tilapia (Oreochromis niloticus) by one-cell-stage microinjection. Aquaculture 105(3–4):219–232

    Article  Google Scholar 

  • Robl JM, Wang Z, Kasinathan P, Kuroiwa Y (2007) Transgenic animal production and animal biotechnology. Theriogenology 67(1):127–133. doi:10.1016/j.theriogenology.2006.09.034

    Article  PubMed  CAS  Google Scholar 

  • Sandra O, Le Rouzic P, Cauty C, Edery M, Prunet P (2000) Expression of the prolactin receptor (tiPRL-R) gene in tilapia Oreochromis niloticus: tissue distribution and cellular localization in osmoregulatory organs. J Mol Endocrinol 24(2):215–224

    Article  PubMed  CAS  Google Scholar 

  • Sinzelle L, Vallin J, Coen L, Chesneau A, Du Pasquier D, Pollet N, Demeneix B, Mazabraud A (2006) Generation of trangenic Xenopus laevis using the Sleeping Beauty transposon system. Transgenic Res 15(6):751–760. doi:10.1007/s11248-006-9014-6

    Article  PubMed  CAS  Google Scholar 

  • Sivasubbu S, Balciunas D, Davidson AE, Pickart MA, Hermanson SB, Wangensteen KJ, Wolbrink DC, Ekker SC (2006) Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech Develop 123(7):513–529. doi:10.1016/j.mod.2006.06.002

    Article  CAS  Google Scholar 

  • Soler L, Conte MA, Katagiri T, Howe AE, Lee BY, Amemiya C, Stuart A, Dossat C, Poulain J, Johnson J, Di Palma F, Lindblad-Toh K, Baroiller JF, D’Cotta H, Ozouf-Costaz C, Kocher TD (2010) Comparative physical maps derived from BAC end sequences of tilapia (Oreochromis niloticus). BMC genomics 11:636. doi:10.1186/1471-2164-11-636

    Article  PubMed  Google Scholar 

  • Song G, Li Q, Long Y, Gu Q, Hackett PB, Cui Z (2012a) Effective gene trapping mediated by sleeping beauty transposon. PLoS ONE 7(8):e44123. doi:10.1371/journal.pone.0044123

    Article  PubMed  CAS  Google Scholar 

  • Song G, Li Q, Long Y, Hackett PB, Cui Z (2012b) Effective expression-independent gene trapping and mutagenesis mediated by sleeping beauty transposon. Journal of genetics and genomics = Yi chuan xue bao 39(9):503–520. doi:10.1016/j.jgg.2012.05.010

    Article  PubMed  CAS  Google Scholar 

  • Stuart GW, Mcmurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103(2):403–412

    PubMed  CAS  Google Scholar 

  • Su Q, Prosser HM, Campos LS, Ortiz M, Nakamura T, Warren M, Dupuy AJ, Jenkins NA, Copeland NG, Bradley A, Liu P (2008) A DNA transposon-based approach to validate oncogenic mutations in the mouse. Proc Natl Acad Sci USA 105(50):19904–19909. doi:10.1073/pnas.0807785105

    Article  PubMed  CAS  Google Scholar 

  • Toneguzzo F, Keating A, Glynn S, Mcdonald K (1988) Electric field-mediated gene-transfer—characterization of DNA transfer and patterns of integration in lymphoid-cells. Nucleic Acids Res 16(12):5515–5532

    Article  PubMed  CAS  Google Scholar 

  • Uren AG, Mikkers H, Kool J, van der Weyden L, Lund AH, Wilson CH, Rance R, Jonkers J, van Lohuizen M, Berns A, Adams DJ (2009) A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nat Protoc 4(5):789–798. doi:10.1038/nprot.2009.64

    Article  PubMed  CAS  Google Scholar 

  • Van Duyne GD (2001) A structural view of cre-loxp site-specific recombination. Annu Rev Biophys Biomol Struct 30:87–104

    Article  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291(5507):1304–1351. doi:10.1126/science.1058040

    Article  PubMed  CAS  Google Scholar 

  • Xie YF, Liu D, Zou J, Li GH, Zhu ZY (1993) Gene-transfer via electroporation in fish. Aquaculture 111(1–4):207–213

    Article  CAS  Google Scholar 

  • Yamauchi M, Kinoshita M, Sasanuma M, Tsuji S, Terada M, Morimyo M, Ishikawa Y (2000) Introduction of a foreign gene into medakafish using the particle gun method. J Exp Zool 287(4):285–293

    Article  PubMed  CAS  Google Scholar 

  • Zhang PJ, Hayat M, Joyce C, Gonzalezvillasenor LI, Lin CM, Dunham RA, Chen TT, Powers DA (1990) Gene-transfer, expression and inheritance of prsv-rainbow trout-Gh Cdna in the common carp, Cyprinus-carpio (Linnaeus). Mol Reprod Dev 25(1):3–13

    Article  PubMed  CAS  Google Scholar 

  • Zhong JY, Wang YP, Zhu ZY (2002) Introduction of the human lactoferrin gene into grass carp (Ctenopharyngodon idellus) to increase resistance against GCH virus. Aquaculture 214(1–4):93–101

    Article  CAS  Google Scholar 

  • Zhu Z, He L, Chen S (1985) Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L. 1758). J Appl Ichthyol 1(1):31–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Qinjin Xu and I-Farn Lei for their careful reading and suggestions. We thank all other members in Qingdao tilapia seed multiplication farm (Qingdao, China) for their helps with the maintenance of experimental tilapia and all other members in Dr. Cui’s laboratory for helpful suggestions and technical assistance. This work was funded by grants from the National High-tech R&D (863) Program (#2007AA10Z164 to Z. Cui) and the National Natural Science Foundation of China (#31101892 to Y. Long).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongbin Cui.

Additional information

Xiaozhen He and Jie Li contribute equally to this work and should be considered as co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 58 kb)

11248_2013_9693_MOESM2_ESM.tif

Supplementary material Figure S1. The design and optimization of PCR primers. (A) Primers designed on the transgene are shown in the upper panel. Primer sets used for detection of transgenic tilapia and lengths (bp) of PCR products are shown in the lower panel. (B) The sensitivity and specificity of six primer sets were determined by PCR in a 25 μL volume containing 100 ng genomic DNA as template and transgenic plasmids (0, 1, 5, 10, 20, 50 or 100 copies). (TIFF 1606 kb)

11248_2013_9693_MOESM3_ESM.tif

Supplementary material 3 Figure S2. PCR screening of transgenic tilapia. (A) PCR of P0 fish with the primer set pXf/pYr. P: positive control using the transgenic plasmid as the template; WT: genomic DNA of wild type fish as the template; M: DNA marker; 1 ~ 45: genomic DNA samples of P0 tilapia. (B) PCR of F1 fish with the primer set pXf/pYr. P: positive control using the transgenic plasmid as the template; WT: genomic DNA of wild type fish as the template; M: DNA marker; 1’ ~ 219’: genomic DNA samples of F1 tilapia. (C) PCR of F2 fish with the primer set pXf/pYr. P: positive control using the transgenic plasmid as the template; WT: genomic DNA of wild type fish as the template; M: DNA marker; 1’’ ~ 91’’: genomic DNA samples of F2 tilapia. (TIFF 2581 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Li, J., Long, Y. et al. Gene transfer and mutagenesis mediated by Sleeping Beauty transposon in Nile tilapia (Oreochromis niloticus). Transgenic Res 22, 913–924 (2013). https://doi.org/10.1007/s11248-013-9693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9693-8

Keywords

Navigation