Skip to main content
Log in

Studying Genetic Variability of Pomegranate (Punica granatum L.) Based on Chloroplast DNA and Barcode Genes

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Chloroplast DNA has been used extensively to analyze plant phylogenies at different taxonomic levels because of its size, organization and sequence conservation. In the present research, two chloroplastic regions, petApsaJ, trnCtrnD and four DNA barcodes (trnHpsbA, ITS, rbcL, matK), were used to introduce suitable regions for the assessment of genetic diversity among P. granatum L. genotypes. Analysis of psbEpetL in petApsaJ region revealed 1,300 nucleotides with 4.29 % genetic diversity among genotypes, while trnCpetN in trnCtrnD region showed 1.8 % genetic diversity. Therefore, despite the results obtained from the study of other plants, the trnCtrnD region had a low potential for the evaluation of diversity among pomegranate genotypes. Analysis of DNA barcodes in pomegranate showed that trnHpsbA (genetic diversity 2.91 %) provides the highest intra-species variation, followed by ITS (genetic diversity 0.44 %). Eighteen genotypes from different geographical origins of Iran were used to investigate psbEpetL and trnHpsbA potential as novel barcodes to determine genetic polymorphism and characterize pomegranate genotypes. The results suggested that two regions, psbEpetL and trnHpsbA, were more suitable for determining intra-species relationships of pomegranate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Behzadi-Shahrbabaki, Genetic diversity of pomegranate genotypes in Iran. Nashr Amoozesh Keshavarzi, Iran (1998).

  2. Mars, M. (2000). Pomegranate plant material: genetic resources and breeding, a review. Options Méditerranéennes Serie A, 42, 55–62.

    Google Scholar 

  3. Hasnoui, N., Buonamici, A., Sebastiani, F., Mars, M., Zhang, D., & Vendramin, G. (2011). Molecular genetic diversity of Punica granatum L (pomegranate) as revealed by microsatellite DNA markers (SSR). Gene, 493, 105–112.

    Article  Google Scholar 

  4. Koehne, E. (1881). Lythraceae monographice describuntur. Botanische Jahrbücher für Systematik, 1, 142–157.

    Google Scholar 

  5. Morris, J. (2007). A molecular phylogeny of the Lythraceae and inference of the evolution of heterostyly. PhD thesis, Kent State University, Ohio.

  6. Conti, E., Lit, A., Wilson, P. G., Graham, S. A., Brigges, B. G., Johnson, L. A. S., et al. (1997). Interfamilar relationships in Myrtales molecular phylogeny and pattern of morphological evolution. Systematic Botany, 22, 629–647.

    Article  Google Scholar 

  7. Ozkan, Y. (2005). Investigation on physical and chemical characteristics of some pomegranate genotypes (Punica granatum L) of Tokat province in Turkey. Asian Journal of Chemistry, 17, 939–942.

    CAS  Google Scholar 

  8. Ercisli, S., Agar, G., Orhan, E., Yildirim, N., & Hizarci, Y. (2007). Interspecific variability of RAPD and fatty acid composition of some pomegranate cultivars (Punica granatum L) growing in southern Anatolia region in Turkey. Biochemical Systematics and Ecology, 35, 764–769.

    Article  CAS  Google Scholar 

  9. Talebi, M., Bahar, M., Sharifnabi, B., & Yamchi, A. (2011). Evaluation of genetic diversity among Iranian pomegranate (Punica granatum L) cultivars, using ISSR and RAPD markers. Taxonomics Biosystematics, 8, 35–44.

    Google Scholar 

  10. Pirseyedi, S. M., Valizadehghan, S., Mardi, M., Ghaffari, M. H., Mahmoodi, P., Zahravi, M., et al. (2010). Isolation and characterization of novel microsatellite markers in pomegranate (Punica granatum L.). International Journal of Molecular Sciences, 11, 2010–2016.

    Article  CAS  Google Scholar 

  11. Soriano, J., Zuriaga, E., Rubio, P., Llácer, G., Infante, R., & Badenes, M. (2011). Development and characterization of microsatellite markers in pomegranate (Punica granatum L). Molecular Breeding, 27, 119–128.

    Article  Google Scholar 

  12. Parvaresh, M., Talebi, M., & Sayed-Tabatabaei, B. E. (2012). Molecular diversity and genetic relationship of pomegranate (Punica granatum L) genotypes using microsatellite markers. Scientia Horticulturae, 138, 244–252.

    Article  CAS  Google Scholar 

  13. Jbir, R., Hasnaoui, N., Mars, M., Marrakchi, M., & Trifi, M. (2008). Characterization of Tunisian pomegranate (Punica granatum L.) cultivars using amplified fragment length polymorphism analysis. Scientia Horticulturae, 115, 231–237.

    Article  CAS  Google Scholar 

  14. Ercisli, S., Kafkas, E., Orphan, E., Kafkas, S., Dogan, Y., & Esitken, A. (2011). Genetic characterization of pomegranate (Punica granatum L.) genotypes by AFLP markers. Biological Research, 44, 345–350.

    Article  CAS  Google Scholar 

  15. Soleimani, M. H., Talebi, M., & Sayed-Tabatabaei, B. E. (2012). Use of SRAP markers to assess genetic diversity and population structure of wild, cultivated, and ornamental pomegranates (Punica granatum L) in different regions of Iran. Plant Systematics and Evolution, 298(6), 1141–1149.

    Article  Google Scholar 

  16. Norouzi, M., Talebi, M., & Sayed-Tabatabaei, B. E. (2012). Chloroplast microsatellite diversity and population genetic structure of Iranian pomegranate (Punica granatum L) genotypes. Scientia Horticulturae, 137, 114–120.

    Article  CAS  Google Scholar 

  17. Clegg, M. T., Gaut, B. S., Learn, G. H., & Morton, B. R. (1994). Rates and patterns of chloroplast DNA evolution. Proceedings of the National Academy of Sciences of the United States of America, 91, 6797–6801.

    Article  Google Scholar 

  18. Lee, C., & Wen, J. (2004). Phylogeny of Panax using chloroplast trnCtrnD intergenic region and the utility of trnCtrnD in interspecific studies of plants. Molecular Phylogenetics and Evolution, 31, 894–903.

    Article  CAS  Google Scholar 

  19. Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., & Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102, 8369–8374.

    Article  CAS  Google Scholar 

  20. Ngamriabsakul, C., & Techaprasan, J. (2006). The phylogeny of Thai Boesenbergia (Zingiberaceae) based on petApsbJ spacer (chloroplast DNA). Journal of Science and Technology, 28(1), 49–57.

    Google Scholar 

  21. Steele, P. R., Friar, L. M., Gilbert, L. E., & Jansen, R. K. (2010). Molecular systematics of the neotropical genus Psiguria (Cucurbitaceae): implication for phylogeny and species identification. American Journal of Botany, 97(1), 156–173.

    Article  CAS  Google Scholar 

  22. Hebert, P. D. N., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270, 96–99.

    Article  Google Scholar 

  23. Kress, W. J., & Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnHpsbA spacer region. PLoS ONE, 2, 508.

    Article  Google Scholar 

  24. Lahaye, R., van der Bank, M., Bogarin, D., Warner, J., & Pupulin, F. (2008). DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America, 105, 2923–2928.

    Article  CAS  Google Scholar 

  25. Newmaster, S. G., Fazekas, A. J., Steeves, R. A. D., & Janovec, J. (2008). Testing candidate plant barcode regions in the Myristicaceae. Molecular Ecology Resources, 8, 480–490.

    Article  CAS  Google Scholar 

  26. Thomas, C. (2009). Plant barcode soon to become reality. Science, 325, 526.

    Article  CAS  Google Scholar 

  27. Huang, Y. L., & Shi, S. H. (2002). Phylogenetic of Lythraceae sensu lato: a preliminary analysis based on chloroplast rbcL gene, psaAycf3 spacer, and nuclear rDNA internal transcribed spacer sequences. International Journal of Plant Sciences, 163, 215–225.

    Article  CAS  Google Scholar 

  28. Graham, S. W., & Olmstead, R. G. (2000). Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. American Journal of Botany, 87, 1712–1730.

    Article  CAS  Google Scholar 

  29. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.

    Article  CAS  Google Scholar 

  30. Melgarejo, P., Marti′nez, J. J., Herna′ndez, F., Marti′nez, R., Legua, P., Oncina, R., et al. (2009). Cultivar identification using 18S–28S rDNA intergenic spacer-RFLP in pomegranate (Punica granatum L). Scientia Horticulturae, 120, 500–503.

    Article  CAS  Google Scholar 

  31. Cuenoud, P., Savolainen, V., & Chatrou, L. W. (2002). Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany, 89, 132–144.

    Article  CAS  Google Scholar 

  32. Technelysium Pty Ltd. (2004). Chromas. http://www.technelysium.com.au/chromas.html.

  33. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    CAS  Google Scholar 

  34. Tamura, K., Peterson, N., Peterson, D., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  35. Swofford, D. L. (2002). PAUP* phylogenetic analysis using parsimony (* and other methods), version 40b10. Sunderland: Sinauer.

    Google Scholar 

  36. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Journal of Evolutionary Bioinformatics, 1, 47–50.

    CAS  Google Scholar 

  37. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  38. Brown, T. A. (2006). Gene cloning and DNA analysis, 5th edn. UK: Blackwell.

    Google Scholar 

  39. Marechal, L., Guillemaut, P., Grienenberger, J. M., & Weil, H. (1985). Sequence and codon recognition of bean mitochondria and chloroplast tRNAtrp: evidence for a high degree of homology. Nucleic Acids Research, 13(12), 4411–4416.

    Article  CAS  Google Scholar 

  40. Hande, S. (1997). Nucleotide sequence of a cucumber chloroplast proline tRNA. Journal of Biosciences, 22, 143–147.

    Article  CAS  Google Scholar 

  41. Marechal-Drouard, L., Weil, J. Η., & Dietrich, A. (1993). Transfer RNAs and transfer RNA genes in plant. Annual Review of Plant Physiology and Molecular Biology, 44, 13–32.

    Article  CAS  Google Scholar 

  42. Shaw, J., Lickey, E. B., Beck, J. T., Farmer, S. B., Liu, W., Miller, J., et al. (2005). The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany, 92, 142–166.

    Google Scholar 

  43. Shaw, J., Lickey, E. B., Schilling, E. E., & Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding region for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany, 94(3), 275–288.

    Article  CAS  Google Scholar 

  44. Yan, H. F., Hao, G., Hu, C. M., & Ge, X. J. (2011). DNA barcoding in closely related species: a case study of Primula L sect Proliferae Pax (Primulaceae) in China. Journal of Systematics and Evolution, 49(3), 225–236.

    Article  Google Scholar 

  45. Edwards, D., Horn, A., Taylor, D., Savolainen, V., & Hawkins, J. A. (2008). DNA barcoding of a large genus, Aspalathus L (Fabaceae). Taxon, 57, 1317–1327.

    Google Scholar 

  46. Ackerfield, J., & Wen, J. (2003). A morphometric analysis of Hedera L (the ivy genus, Araliaceae) and its taxonomic implications. International Journal of Plant Sciences, 164, 593–602.

    Article  CAS  Google Scholar 

  47. Yamashiro, T., Fukuda, T., Yokoyama, J., & Maki, M. (2004). Molecular phylogeny of Vincetoxicum (Apocynaceae–Asclepiadoideae) based on the nucleotide sequences of cpDNA and nrDNAs. Molecular Phylogenetics and Evolution, 31(2), 689–7006.

    Article  CAS  Google Scholar 

  48. Newmaster, S. G., & Ragupathy, S. (2009). Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Molecular Ecology Resources, 9, 172–180.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Talebi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 Sequencing regions and their accession numbers of pomegranate that submitted to Gene bank (DOC 106 kb)

12033_2013_9676_MOESM2_ESM.doc

Fig. S1 Determination of gene location using BLASTn tool. petApsaJ region (A), trnCtrnD (B), ITS (C) and trnHpsbA (D) (DOC 143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajiahmadi, Z., Talebi, M. & Sayed-Tabatabaei, B.E. Studying Genetic Variability of Pomegranate (Punica granatum L.) Based on Chloroplast DNA and Barcode Genes. Mol Biotechnol 55, 249–259 (2013). https://doi.org/10.1007/s12033-013-9676-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9676-2

Keywords

Navigation