Skip to main content

Advertisement

Log in

Reprogrammed Peripheral Blood Mononuclear Cells are Able to Survive Longer in Irradiated Female Mice

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Induced multipotent stem (iMS) cells are originated from somatic cells and become multipotent by genetic and/or epigenetic modifications. Previous studies have shown that the fish oocytes extracts (FOE) can induce skin fibroblast cells into iMS cells. In this study, we aim to determine whether FOE can similarly induce mouse peripheral blood mononuclear cells (PBMCs) into the iMS state and if so, whether they can survive longer when they are transplanted into the irradiation female mice. PBMCs of GFP-transgenic male mice were cultured and transiently reprogrammed by FOE. They were deemed reaching the iMS state after detection of expression of stem cell markers. The iMS-like PBMCs were transplanted into female C57BL mice by tail vein injection. The spleen wet weights as well as numbers of colonies of the recipient mice were examined. The results showed the spleen wet weights and numbers of spleen colonies of FOE-induced group were all significantly higher than those of the non-induced group and negative control group. On day 90 after transplantation, FISH analysis detected the presence of Y chromosome in the induced group, but not of the other groups. The current findings demonstrate that FOE-induced PBMCs are able to survive longer in irradiated female mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813.

    Article  CAS  Google Scholar 

  2. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  Google Scholar 

  3. Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458, 771–775.

    Article  CAS  Google Scholar 

  4. Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., et al. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964–977.

    Article  CAS  Google Scholar 

  5. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I. I., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801.

    Article  CAS  Google Scholar 

  6. Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.

    Article  CAS  Google Scholar 

  7. Li, W., & Ding, S. (2010). Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends in Pharmacological Sciences, 31, 36–45.

    Article  Google Scholar 

  8. Zhu, X. Q., Pan, X. H., Wang, W., Chen, Q., Pang, R. Q., Cai, X. M., et al. (2010). Transient in vitro epigenetic reprogramming of skin fibroblasts into multipotent cells. Biomaterials, 31, 2779–2787.

    Article  CAS  Google Scholar 

  9. Miyamoto, K., Tsukiyama, T., Yang, Y., Li, N., Minami, N., Yamada, M., et al. (2009). Cell-free extracts from mammalian oocytes partially induce nuclear reprogramming in somatic cells. Biology of Reproduction, 80, 935–943.

    Article  CAS  Google Scholar 

  10. Alberio, R., Johnson, A. D., Stick, R., & Campbell, K. H. (2005). Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Experimental Cell Research, 307, 131–141.

    Article  CAS  Google Scholar 

  11. Hansis, C., Barreto, G., Maltry, N., & Niehrs, C. (2004). Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1. Current Biology, 14, 1475–1480.

    Article  CAS  Google Scholar 

  12. Miyamoto, K., Furusawa, T., Ohnuki, M., Goel, S., Tokunaga, T., Minami, N., et al. (2007). Reprogramming events of mammalian somatic cells induced by Xenopus laevis egg extracts. Molecular Reproduction and Development, 74, 1268–1277.

    Article  CAS  Google Scholar 

  13. Leno, G. H. (1998). Cell-free systems to study chromatin remodeling. Methods in Cell Biology, 53, 497–515.

    Article  CAS  Google Scholar 

  14. Gonda, K., Fowler, J., Katoku-Kikyo, N., Haroldson, J., Wudel, J., & Kikyo, N. (2003). Reversible disassembly of somatic nucleoli by the germ cell proteins FRGY2a and FRGY2b. Nature Cell Biology, 5, 205–210.

    Article  CAS  Google Scholar 

  15. Kikyo, N., Wade, P. A., Guschin, D., Ge, H., & Wolffe, A. P. (2000). Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science, 289, 2360–2362.

    Article  CAS  Google Scholar 

  16. Tamada, H., Van Thuan, N., Reed, P., Nelson, D., Katoku-Kikyo, N., Wudel, J., et al. (2006). Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Molecular and Cellular Biology, 26, 1259–1271.

    Article  CAS  Google Scholar 

  17. Shi, Y., Desponts, C., Do, J. T., Hahm, H. S., Scholer, H. R., & Ding, S. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 3, 568–574.

    Article  CAS  Google Scholar 

  18. Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., et al. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26, 795–797.

    Article  CAS  Google Scholar 

  19. Ichida, J. K., Blanchard, J., Lam, K., Son, E. Y., Chung, J. E., Egli, D., et al. (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5, 491–503.

    Article  CAS  Google Scholar 

  20. Lyssiotis, C. A., Foreman, R. K., Staerk, J., Garcia, M., Mathur, D., Markoulaki, S., et al. (2009). Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proceedings of the National Academy of Sciences United States of America, 106, 8912–8917.

    Article  Google Scholar 

  21. Esteban, M. A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6, 71–79.

    Article  CAS  Google Scholar 

  22. Schambach, A., Cantz, T., Baum, C., & Cathomen, T. (2010). Generation and genetic modification of induced pluripotent stem cells. Expert Opinion on Biological Therapy, 10, 1089–1103.

    Article  CAS  Google Scholar 

  23. Murray, A. W. (1991). Cell cycle extracts. Methods in Cell Biology, 36, 581–605.

    Article  CAS  Google Scholar 

  24. Cole LJ. (1962). Spleen colony formation and hemopoietic restoration in lethally X-irradiated mice after injection of isogenic peritoneal cells. Research and Development Technical Report 12.

  25. Fu, J. X., & Zhang, X. G. (2001). Effects of recombinant human macrophage colony stimulating factor (rhM-CSF) on stromal cell derived during the time of mice colony formation unit-spleen (CFU-S) and its role on CD34+ cells expansion in vitro. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 23, 523–527.

    CAS  Google Scholar 

  26. Hofer, M., Pospisil, M., Netikova, J., Znojil, V., & Vacha, J. (1999). Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine act additively to enhance the hemopoietic spleen colony formation in irradiated mice. Physiological Research, 48, 37–42.

    CAS  Google Scholar 

  27. Nagayoshi, K., Ohkawa, H., Yorozu, K., Higuchi, M., Higashi, S., Kubota, N., et al. (2006). Increased mobilization of c-kit + Sca-1 + Lin- (KSL) cells and colony-forming units in spleen (CFU-S) following de novo formation of a stem cell niche depends on dynamic, but not stable, membranous ossification. Journal of Cellular Physiology, 208, 188–194.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31172170), 973 Projects (2012CB518106) and special funding by the China Postdoctoral Science Foundation (201104748).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Bing Han or Xing-Hua Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, GP., Han, YB., Ruan, GH. et al. Reprogrammed Peripheral Blood Mononuclear Cells are Able to Survive Longer in Irradiated Female Mice. Mol Biotechnol 55, 111–119 (2013). https://doi.org/10.1007/s12033-013-9661-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9661-9

Keywords

Navigation