Skip to main content
Log in

Cellular reprogramming and its application in regenerative medicine

  • Review Article
  • Regenerative Medicine
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Ever since a technology to reprogram somatic cells into pluripotent stem cells was developed by Dr. Shinya Yamanaka’s group in 2006, its therapeutic potential has been extensively discussed. We now call the reprogrammed embryonic stem cell (ESC)-like cell an ‘induced pluripotent stem cell’ (iPSC). The beauty and power of the iPS in human case is that it avoids many ethical issues, in that unlike human ESCs (hESCs), iPSCs do not require destroying a human embryo to establish pluripotent cell lines. The iPSC holds many hopes that many human diseases may be treatable in the near future. On the other hand, there are still several issues that need to be solved prior to the therapeutic use of iPSCs in humans directly. The biggest hurdle is that, so far, there is lack of ways to completely exclude tumorigenic iPSC-derived cells. Additionally, there is an issue that immune rejection may occur, even in autologously grafted iPSCs, as was observed in monkey experiment. Nevertheless, iPSCs, combined with genetic manipulation, hold much promise that iPSCs may be used in cell therapy procedures and as tools for investigating underlying mechanisms of human diseases. This review will discuss recent progress in cellular reprogramming and its potential use in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Takahashi and S Yamanaka., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126(4), 663 (2006).

    CAS  PubMed  Google Scholar 

  2. K Takahashi, K Tanabe, M Ohnuki, et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, 131(5), 861 (2007).

    CAS  PubMed  Google Scholar 

  3. J Liao, C Cui, S Chen, et al., Generation of induced pluripotent stem cell lines from adult rat cells, Cell Stem Cell, 4(1), 11 (2009).

    CAS  PubMed  Google Scholar 

  4. A Honda, M Hirose, M Hatori, et al., Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine, J Biol Chem, 285(41), 31362 (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  5. H. Liu, F. Zhu, J. Yong, P. Zhang, P Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts, Cell Stem Cell, 3, 587 (2008).

    CAS  PubMed  Google Scholar 

  6. R Fang, K Liu, Y Zhao et al., Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts, Cell Stem Cell, 15(4), 488 (2014).

    CAS  PubMed  Google Scholar 

  7. MA Esteban, J Xu, J Yang, et al., Generation of induced pluripotent stem cell lines from Tibetan miniature pig, J Biol Chem 284, 26 (2009).

    Google Scholar 

  8. H Sumer, J Liu, LF Malaver Ortega, et al., NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts, J Anim Sci, 89, 2708 (2011).

    CAS  PubMed  Google Scholar 

  9. L Bao, L He, J Chen, et al., Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors, Cell Res 21, 600 (2011).

    PubMed Central  CAS  PubMed  Google Scholar 

  10. K Nagy, HK Sung, P Zhang, et al., Induced pluripotent stem cell lines derived from equine fibroblasts, Stem Cell Rev, 7, 693. (2011).

    PubMed Central  PubMed  Google Scholar 

  11. H Shimada, A Nakada, Y Hashimoto, et al., Generation of canine-induced pluripotent stem cells by retroviral transduction and chemical inhibitors, Mol Reprod Dev, 77, 2. (2010).

    CAS  PubMed  Google Scholar 

  12. Y Lu, FD West, BJ Jordan, et al., Induced pluripotency in chicken embryonic fibroblast results in a germ cell fate, Stem Cells Dev, 23(15), 1755 (2014).

    CAS  PubMed  Google Scholar 

  13. X Chen, H Xu, P Yuan, et al., Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells, Cell, 133, 1106 (2008).

    CAS  PubMed  Google Scholar 

  14. J Kim, J Chu, X Shen, et al., An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells, Cell, 132, 1049 (2008).

    CAS  PubMed  Google Scholar 

  15. R Schmidt, K Plath. The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation, Genome Biol, 13, 251 (2012).

    PubMed Central  CAS  PubMed  Google Scholar 

  16. RP Koche, ZD Smith, M Adli, et al., Reprogramming factor expression initiates widespread targeted chromatin remodeling, Cell Stem Cell, 8, 96 (2011).

    PubMed Central  CAS  PubMed  Google Scholar 

  17. R Sridharan, J Tchieu, MJ Mason, et al., Role of the murine reprogramming factors in the induction of pluripotency, Cell, 136, 364 (2009).

    PubMed Central  CAS  PubMed  Google Scholar 

  18. A Soufi, G Donahue, K Zaret, Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome, Cell, 151, 994 (2012).

    PubMed Central  CAS  PubMed  Google Scholar 

  19. MH Kagey, JJ Newman, S Bilodeau, et al., Mediator and Cohesin connect gene expression and chromatin architecture, Nature, 467, 430 (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  20. C Lin, A Garruss, Z Luo, et al., The RNA Pol II elongation factor Ell3 marks enhancers in ES cells and primes future gene activation, Cell, 152, 144 (2012).

    PubMed Central  PubMed  Google Scholar 

  21. T Mikkelsen, J Hanna, X Zhang, et al., Dissecting direct reprogramming thr0ough integrative genomic analysis, Nature, 454, 49 (2008).

    PubMed Central  CAS  PubMed  Google Scholar 

  22. R Li, J Liang, S Ni, et al., A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts, Cell Stem Cell, 7, 51 (2010).

    CAS  PubMed  Google Scholar 

  23. A Golipour, L David, Y Liu, et al., A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network, Cell Stem Cell, 11, 769 (2012).

    CAS  PubMed  Google Scholar 

  24. J Polo, E Anderssen, R Walsh, et al., A molecular roadmap of reprogramming somatic cells into iPS cells, Cell, 151, 1617 (2012).

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Y Buganim, D Faddah, A Cheng, et al., Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase, Cell, 150, 1209 (2012).

    PubMed Central  CAS  PubMed  Google Scholar 

  26. J Hanna, K Saha, B Pando, et al. Direct cell reprogramming is a stochastic process amenable to acceleration, Nature, 462, 595 (2009).

    PubMed Central  CAS  PubMed  Google Scholar 

  27. EP Papapetrou, MJ Tomishima, SM Chambers, et al., Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation, Proc Natl Acad Sci U S A, 106(31), 12759 (2009).

    PubMed Central  CAS  PubMed  Google Scholar 

  28. EP Papapetrou and M Sadelain. Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector, Nat Protoc, 6(9), 1251 (2011).

    CAS  PubMed  Google Scholar 

  29. CS Swindle, HG Kim and CA Klug. Mutation of CpGs in the murine stem cell virus retroviral vector long terminal repeat represses silencing in embryonic stem cells, J Biol Chem, 279(1), 34 (2004).

    CAS  PubMed  Google Scholar 

  30. M Stadtfeld, M Nagaya, J Utikal, et al., Induced pluripotent stem cells generated without viral integration, Science, 322, 945 (2008).

    PubMed Central  CAS  PubMed  Google Scholar 

  31. T Seki, S Yuasa, M Oda, et al., Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells, Cell Stem Cell, 7, 11 (2010).

    CAS  PubMed  Google Scholar 

  32. N Fusaki, H Ban, A Nishiyama, et al., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome, Proc Jpn Acad Ser B Phys Biol Sci, 85, 348 (2009).

    PubMed Central  CAS  PubMed  Google Scholar 

  33. F Gonzalez, M Barragan Monasterio, G Tiscornia, et al., Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector, Proc Natl Acad Sci USA, 106, 8918 (2009).

    PubMed Central  CAS  PubMed  Google Scholar 

  34. K Okita, M Nakagawa, H Hyenjong, et al., Generation of mouse induced pluripotent stem cells without viral vectors, Science, 322, 949 (2008).

    CAS  PubMed  Google Scholar 

  35. J Yu, K Hu, K Smuga-Otto, et al., Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences, Science, 324, 797 (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  36. K Okita, Y Matsumura, Y Sato, et al., A more efficient method to generate integration-free human iPS cells. Nature Methods, 8, 409 (2011)

    CAS  PubMed  Google Scholar 

  37. L Warren, PD Manos, T Ahfeldt, et al., Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA, Cell Stem Cell, 7, 618. (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  38. H Zhou, S Wu, JY Joo, et al. Generation of induced pluripotent stem cells using recombinant proteins, Cell Stem Cell, 4, 381 (2009).

    CAS  PubMed  Google Scholar 

  39. JH Moon, JS Heo, JS Kim, et al., Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1, Cell Research, 21, 1305 (2011).

    PubMed Central  CAS  PubMed  Google Scholar 

  40. RL Judson, JE Babiarz, M Venere, et al., Embryonic stem cellspecific microRNAs promote induced pluripotency, Nat Biotechnol, 27, 459 (2009).

    PubMed Central  CAS  PubMed  Google Scholar 

  41. SL Lin, DC Chang, CH Lin, et al., Regulation of somatic cell reprogramming through inducible mir-302 expression, Nucleic Acids Res, 39, 1054 (2010).

    PubMed Central  PubMed  Google Scholar 

  42. N Pfaff, J Fiedler, A Holzmann, et al., miRNA screening reveals a new miRNA family stimulating iPS cell generation via regulation of Meox2, EMBO reports, 12, 1153 (2011).

    PubMed Central  CAS  PubMed  Google Scholar 

  43. F Anokye-Danso, CM Trivedi, D Juhr, et al., Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency, Cell Stem Cell, 8, 376 (2011).

    PubMed Central  CAS  PubMed  Google Scholar 

  44. M Tahiliani, KP Koh, Y Shen, et al., Conversion of 5- methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science. 324, 930 (2009).

    PubMed Central  CAS  PubMed  Google Scholar 

  45. S Ito, AC D’Alessio, OV Taranova, et al., Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification, Nature, 466, 1129 (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  46. S Ito, L Shen, Q Dai, et al., Tet proteins can convert 5- methylcytosine to 5-formylcytosine and 5-carboxylcytosine, Science. 333, 1300 (2011).

    PubMed Central  CAS  PubMed  Google Scholar 

  47. CA Doege, K Inoue, T Yamashita, et al., Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2, Nature, 488, 652 (2012).

    CAS  PubMed  Google Scholar 

  48. X Hu, L Zhang, SQ Mao, et al., Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming, Cell Stem Cell, 14(4), 512 (2014).

    CAS  PubMed  Google Scholar 

  49. J Chen, L Guo, L Zhang, et al., Vitamin C modulates TET1 function during somatic cell reprogramming, Nat Genet, 45, 1504 (2013).

    CAS  PubMed  Google Scholar 

  50. J He, EM Kallin, Y Tsukada, et al., The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b), Nat Struct Mol Biol, 15, 1169 (2008).

    PubMed Central  CAS  PubMed  Google Scholar 

  51. G Liang, J He, Y Zhang, Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming, Nat Cell Bio, 14, 457 (2012).

    CAS  Google Scholar 

  52. J He, L Shen, M Wan, et al., Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes, Nat Cell Bio, 15, 373 (2013).

    CAS  Google Scholar 

  53. Y Rais, A Zviran, S Geula, et al., Deterministic direct reprogramming of somatic cells to pluripotency, Nature, 502, 65 (2013).

    CAS  PubMed  Google Scholar 

  54. R Santos, L Tosti, A Radzisheuskaya, et al., MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner, Cell Stem Cell, 15, 102 (2014).

    PubMed Central  PubMed  Google Scholar 

  55. P Hou, Y Li, X Zhang, et al., Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds, Science, 341, 651 (2013).

    CAS  PubMed  Google Scholar 

  56. C Waddington. The Strategy of the Genes. London, Allen & Unwin, 262 (1957).

    Google Scholar 

  57. N Heins, P Malatesta, F Cecconi, et al., Glial cells generate neurons: the role of the transcription factor Pax6, Nat Neurosci, 5, 308 (2002).

    CAS  PubMed  Google Scholar 

  58. B Berninger, M Costa, U Koch, et al., Functional Properties of Neurons Derived from In Vitro Reprogrammed Postnatal Astroglia, Journal of Neuroscience, 27, 8654 (2007).

    CAS  PubMed  Google Scholar 

  59. C Heinrich, R Blum, S Gascón, et al., Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons, PLoS Biol, 8, e1000373 (2010).

    Google Scholar 

  60. Heinrich C, Gascón S, Masserdotti G, et al., Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex, Nat Protoc, 6, 214 (2011).

    CAS  PubMed  Google Scholar 

  61. A Buffo, Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair, Proc of the Nat Aca of Sci, 102, 18183, (2005).

    CAS  Google Scholar 

  62. T Vierbuchen, A Ostermeier, ZP Pang, et al., Direct conversion of fibroblasts to functional neurons by defined factors, Nature, 463, 1035 (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  63. R Ambasudhan, M Talantova, R Coleman, et al., Direct Reprogramming of Adult Human Fibroblasts to Functional Neurons under Defined Conditions, Cell Stem Cell, 9, 113 (2011).

    CAS  PubMed  Google Scholar 

  64. SM Kim, H Flaßkamp, A Hermann, et al., Direct conversion of mouse fibroblasts into induced neural stem cells, Nature Protocols, 9, 871 (2014).

    CAS  PubMed  Google Scholar 

  65. OL Wapinski, T Vierbuchen, K Qu, et al., Hierarchical Mechanisms for Direct Reprogramming of Fibroblasts to Neurons, Cell, 155, 621 (2013).

    CAS  PubMed  Google Scholar 

  66. JH Kim, JA Efe, S Zhu, et al., Direct reprogramming of mouse fibroblasts to neural progenitors, PNAS, 108, 7838 (2011).

    PubMed Central  CAS  PubMed  Google Scholar 

  67. HS Kim, JH Kim, YJ Jo, et al., Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors, Stem Cell Research, 12, 60 (2014).

    CAS  PubMed  Google Scholar 

  68. DW Han, N Tapia, A Hermann, et al., Direct Reprogramming of Fibroblasts into Neural Stem Cells by Defined Factors, Cell Stem Cell, 10, 465 (2012).

    CAS  PubMed  Google Scholar 

  69. M Ieda, JD Fu, P Delgado-Olguin, et al., Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors, Cell, 142, 375 (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  70. L Qian, Y Huang, CI Spencer, et al., In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes, Nature, 485, 593 (2012).

    PubMed Central  CAS  PubMed  Google Scholar 

  71. J Fu, N Stone, L Liu, et al., Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State, Stem Cell Reports, 1, 235 (2013).

    PubMed Central  CAS  PubMed  Google Scholar 

  72. S Sekiya, A Suzuki, Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors, Nature, 475, 390 (2011).

    CAS  PubMed  Google Scholar 

  73. P Huang, Z He, S Ji, et al., Induction of functional hepatocytelike cells from mouse fibroblasts by defined factors, Nature, 475, 386 (2011).

    CAS  PubMed  Google Scholar 

  74. B Yu, ZY He, P You, et al., Reprogramming Fibroblasts into Bipotential Hepatic Stem Cells by Defined Factors, Cell Stem Cell, 13, 328 (2013).

    CAS  PubMed  Google Scholar 

  75. P Huang, L Zhang, Y Gao, et al., Direct Reprogramming of Human Fibroblasts to Functional and Expandable Hepatocytes, Cell Stem Cell, 14, 370 (2014).

    CAS  PubMed  Google Scholar 

  76. A Margaritia, B Winklera, E Karamaritia, et al., Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels, Proc. Natl. Acad. Sci. U.S.A., 109, 13793 (2012).

    Google Scholar 

  77. J Li, N Huang, J Zou, et al., Conversion of Human Fibroblasts to Functional Endothelial Cells by Defined Factors, Arterioscler Thromb Vasc Biol, 33, 1366 (2013).

    PubMed Central  CAS  PubMed  Google Scholar 

  78. L Kurian, I Sancho-Martinez, E Nivet, et al., Conversion of human fibroblasts into angioblast-like multipotent progenitor cells, Nat Methods, 10, 77 (2013).

    PubMed Central  CAS  PubMed  Google Scholar 

  79. A Morizane, D Doi, T Kikuchi, et al., Direct Comparison of Autologous and Allogeneic Transplantation of iPSC-Derived Neural Cells in the Brain of a Nonhuman Primate, Stem Cell Reports, 1, 283 (2013).

    PubMed Central  CAS  PubMed  Google Scholar 

  80. O Iglesias-García, B Pelacho, F Prósper, Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling, Journal of Molecular and Cellular Cardiology, 62, 43 (2013).

    PubMed  Google Scholar 

  81. P Liu, S Chen, X Li, et al., Low Immunogenicity of Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Derived from Less Immunogenic Somatic Cells, PLoS One, 8, e69617 (2013).

    Google Scholar 

  82. Z Guo, L Zhang, Z Wu, et al., In Vivo Direct Reprogramming of Reactive Glial Cells into Functional Neurons after Brain Injury and in an Alzheimer’s Disease Model, Cell Stem Cell, 14, 188 (2014).

    PubMed Central  CAS  PubMed  Google Scholar 

  83. O Mohamad, D Drury-Stewart, Mingke Song, et al., Vector-Free and Transgene-Free Human iPS Cells Differentiate into Functional Neurons and Enhance Functional Recovery after Ischemic Stroke in Mice, PLoS One, 8, e64160 (2013).

    Google Scholar 

  84. J Polentes, P Jendelova, M Cailleret, et al., Human induced pluripotent stem cells improve stroke outcome and reduce secondary degeneration in the recipient brain, Cell Transplant., 21, 2587 (2012).

    PubMed  Google Scholar 

  85. K Oki, J Tatarishvili, J Wood, et al., Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain, Stem Cells, 30, 1120 (2012).

    CAS  PubMed  Google Scholar 

  86. MB Jensen, H Yan, R Krishnaney-Davison, et al., Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model, J. Stroke Cerebrovasc. Dis., 22, 304 (2013).

    PubMed Central  PubMed  Google Scholar 

  87. J Qin, B Song, H Zhang, et al., Transplantation of human neuroepithelial- like stem cells derived from induced pluripotent stem cells improves neurological function in rats with experimental intracerebral hemorrhage, Neurosci. Lett., 548, 95 (2013).

    CAS  PubMed  Google Scholar 

  88. F Soldner, D Hockemeyer, C Beard, et al., Parkinson’s Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors, Cell, 136, 964 (2009).

    PubMed Central  CAS  PubMed  Google Scholar 

  89. G Hargus, O Cooper, M Deleidi, et al., Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats, PNAS, 107, 15921 (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  90. M. Wernig, J.P. Zhao, J. Pruszak, et al., Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease, Proc. Natl. Acad. Sci. U.S.A., 105, 5856 (2008).

    PubMed Central  CAS  PubMed  Google Scholar 

  91. YH Rhee, JY Ko, MY Chang, et al., Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease, J. Clin. Invest., 121, 2326 (2011).

    PubMed Central  CAS  PubMed  Google Scholar 

  92. A Swistowski, J Peng, Q Liu, et al., Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions, Stem Cells, 28, 1893 (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  93. MF Burkhardt, FJ Martinez, S Wright, et al., A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells, Molecular and Cellular Neuroscience, 56, 355 (2013).

    CAS  PubMed  Google Scholar 

  94. S Nori, Y Okada, A Yasuda, et al., Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice, Proc. Natl. Acad. Sci. U.S.A., 108, 16825 (2011).

    PubMed Central  CAS  PubMed  Google Scholar 

  95. ST Rashid, S Corbineau, N Hannan, et al., Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells, The Journal of Clinical Investigation, 120, 3127 (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  96. H Liu, Y Kim, S Sharkis, et al., In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins, Sci. Transl. Med., 3, 82ra39 (2011).

    PubMed Central  PubMed  Google Scholar 

  97. J Hanna, M Wernig, S Markoulaki, et al., Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin, Science, 318, 1920 (2007).

    CAS  PubMed  Google Scholar 

  98. M Bershteyn, Y Hayashi, G Desachy, et al., Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells, Nature, 507, 99 (2014).

    PubMed Central  CAS  PubMed  Google Scholar 

  99. A Filareto, S Parker, R Darabi, et al., An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells, Nat. Commun., 4, 1549 (2013).

    PubMed Central  PubMed  Google Scholar 

  100. H Suzuki, R Shibata, T Kito, et al., Therapeutic angiogenesis by transplantation of induced pluripotent stem cell-derived Flk- 1 positive cells, BMC Cell Biol., 11, 72 (2010).

    PubMed Central  PubMed  Google Scholar 

  101. CH Yoo, HJ Na, DS Lee, et al., Endothelial progenitor cells from human dental pulp-derived iPS cells as a therapeutic target for ischemic vascular diseases, Biomaterials, 34, 8149 (2013).

    CAS  PubMed  Google Scholar 

  102. Q Lian, Y Zhang, J Zhang, et al., Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice, Circulation, 121, 1113 (2010).

    PubMed  Google Scholar 

  103. TJ Nelson, A Martinez-Fernandez, S Yamada, et al., Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells, Circulation, 120, 408 (2009).

    PubMed Central  PubMed  Google Scholar 

  104. Y Li, YT Tsai, CW Hsu, et al., Long-term safety and efficacy of human induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa, Mol. Med., 18, 1312 (2012).

    PubMed Central  CAS  PubMed  Google Scholar 

  105. K Homma, S Okamoto, M Mandai, et al., Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors, Stem Cells, 31, 1149 (2013).

    CAS  PubMed  Google Scholar 

  106. ZB Jin, S Okamoto, F Osakada, et al., Modeling Retinal Degeneration Using Patient-Specific Induced Pluripotent Stem Cells, PLoS One, 6, e17084 (2011).

    Google Scholar 

  107. K Kulangara, A Adler, H Wang, et al., The effect of substrate topography on direct reprogramming of fibroblasts to induced neurons, Biomaterials, 35, 5327 (2014).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwonho Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, K. Cellular reprogramming and its application in regenerative medicine. Tissue Eng Regen Med 12, 80–89 (2015). https://doi.org/10.1007/s13770-014-0099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0099-3

Key words

Navigation