Skip to main content
Log in

Characterization of Squalene synthase Gene from Chlorophytum borivilianum (Sant. and Fernand.)

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Saponins are important group of secondary metabolites known for their pharmacological properties. Chlorophytum borivilianum contains high amount of saponins and is thus, recognized as an important medicinal plant with aphrodisiac properties. Though the plant is well known for its pharmaceutical properties, there is meager information available about the genes and enzymes responsible for biosynthesis of saponins from this plant. Squalene synthase (SqS) is the key enzyme of saponin biosynthesis pathway and here, we report cloning and characterization of SqS gene from C. borivilianum. A full-length CbSqS cDNA consisting of 1,760 bp was cloned which contained an open reading frame (ORF) of 1,233 bp, encoding a protein of 411 amino acids. Analysis of deduced amino acid sequence of CbSqS predicted the presence of conserved isoprenoid family domain and catalytic sites. Phylogenetic analysis revealed that CbSqS is closer to Glycine max and monocotyledonous plants. 3D structure prediction using various programs showed CbSqS structure to be similar to SqS from other species. C-terminus truncated recombinant squalene synthase (TruncCbSqS) was expressed in E. coli M15 cells with optimum expression induced with 1 mM IPTG at 37 °C. The gene expression level was analyzed through semi-quantitative RT-PCR and was found to be higher in leaves as compared to the roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jat, R. D., Bordia, P. C. (1990). Propagation studies in safed musli (Chlorophytum species). In B. L. Chaudhary, N. C. Aery, & S. S. Katewa (Eds.), Proceedings of the national symposium on advances in plant sciences: current status and emerging challenges (p. 46). Udaipur: Department of Botany, M. L. Sukhadia University.

  2. Thakur, M., & Dixit, V. K. (2006). Effect of Chlorophytum borivilianum on androgenic and sexual behavior of male rats. Indian Drugs, 43(4), 300–306.

    Google Scholar 

  3. Kumar, M., Meena, P., Verma, S., Kumar, M., & Kumar, A. (2010). Anti-tumour, anti-mutagenic and chemomodulatory potential of Chlorophytum borivilianum. Asian Pacific Journal of Cancer Prevention, 11, 327–334.

    Google Scholar 

  4. Govindrajan, R., Sreevidya, N., Vijaykumar, M., Thakum, M., & Dixit, V. K. (2005). In-vitro antioxidant activity of ethanolic extract of Chlorophytum borivilianum. Natural Products Science, 11, 165–169.

    Google Scholar 

  5. Deore, S. L., & Khadabadi, S. S. (2008). Anti-inflammatory and antioxidant activity of Chlorophytum borivilianum root extracts. Asian Journal of Chemistry, 20, 983–986.

    CAS  Google Scholar 

  6. Deore, S. L., & Khadabadi, S. S. (2010). Effect of Chlorophytum borivilianum on adjuvant induced arthritis in rats. Annals of Biological Research, 1(1), 36–40.

    Google Scholar 

  7. Tandon, M., & Shukla, Y. N. (1995). Phytoconstituents of Asparagus adescendens, Chlorophytum arundincaeum and Curculigo orichoides: a review. CROMAP, 12, 202–204.

  8. Acharya, D., Mitaine-Offer, A. C., & Kaushik, N. (2009). Cytotoxic spirostane-type saponins from the roots of Chlorophytum borivilianum. Journal of Natural Products, 72, 177–181.

    Article  CAS  Google Scholar 

  9. Abe, I., Rohmer, M., & Prestwich, G. D. (1993). Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chemical Reviews, 93(6), 2189–2206.

    Article  CAS  Google Scholar 

  10. Takatsuji, H., Nishino, T., Izui, K., & Katsuki, H. (1982). Formation of dehydrosqualene catalyzed by squalene synthetase in S. cerevisiae. Journal of Biochemistry, 91, 911–921.

    CAS  Google Scholar 

  11. Wentzinger, L., Bach, T., & Hartmann, M. (2002). Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Physiology, 130(1), 334–346.

    Article  CAS  Google Scholar 

  12. Akamine, S., Nakamori, K., Chechetka, S. A., Banba, M., Umehara, Y., Kouchi, H., et al. (2003). cDNA cloning, mRNAexpression, and mutational analysis of the squalene synthase gene of Lotus japonicus. Biochimica et Biophysica Acta, 1626(1–3), 97–101.

    Article  CAS  Google Scholar 

  13. Hata, S., Sanmiya, K., Kouchi, H., Matsuoka, M., Yamamoto, N., & Izuki, K. (1997). cDNA cloning of squalene synthase genes from mono and dicotylednous plants, and expression of the gene in rice. Plant and Cell Physiology, 38, 1409–1413.

    Article  CAS  Google Scholar 

  14. Hayashi, H., Hirota, A., Hiraoka, N., & Ikeshiro, Y. (1999). Molecular cloning and characterization of two cDNAs for Glycyrrhiza glabra squalene synthase. Biological &/and Pharmaceutical Bulletin, 22, 947–950.

    Article  CAS  Google Scholar 

  15. Lee, J. H., et al. (2002). Cloning and expression of squalene synthase cDNA from hot pepper (Capsicum annuum L.). Molecules and Cells, 13, 436–443.

    CAS  Google Scholar 

  16. Lee, M. H., Jeong, J. H., Seo, J. W., Shin, C. G., & Kim, Y. S. (2004). Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant and Cell Physiology, 45, 976–984.

    Article  CAS  Google Scholar 

  17. Seo, J. W., Jeong, J. H., Shin, C. G., Lo, S. C., Han, S. S., & Yu, K. W. (2005). Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry, 66, 869–877.

    Article  CAS  Google Scholar 

  18. Kim, D. T., Han, Y. J., Huh, H. G., & Choi, E. Y. (2001). Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in Panax ginseng. Plant and Cell Physiology, 52(1), 125–137.

    Article  Google Scholar 

  19. Sunil, K., Shikha, K., Sanjay, K., Jagdeep, K., & Kashmir, S. (2012). Differentially expressed transcripts from leaf and root tissue of Chlorophytum borivilianum: A plant with high medicinal value. Gene, 511, 79–87. doi:10.1016/j.gene.2012.09.046.

    Article  Google Scholar 

  20. Ghawana, S., et al. (2011). An RNA isolation system for plant tissues rich in secondary metabolites. BMC Research Notes, 4, 85.

    Article  CAS  Google Scholar 

  21. Kribii, R., et al. (1997). Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase—involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. European Journal of Biochemistry, 249, 61–69.

    Article  CAS  Google Scholar 

  22. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., & Appel, R. D. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Totowa: Humana Press.

    Chapter  Google Scholar 

  23. Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 38(Web Server Issue), 529–533.

    Google Scholar 

  24. Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11, 681–684.

    CAS  Google Scholar 

  25. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  26. Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40.

    Article  Google Scholar 

  27. Bhat, W. W., et al. (2012). Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene, 499, 25–36.

    Article  CAS  Google Scholar 

  28. Singh, K., et al. (2004). 26S rRNA-based internal control gene primer pair for reverse transcription polymerase chain reaction-based quantitative expression studies in diverse plant species. Analytical Biochemistry, 335, 330–333.

    Article  CAS  Google Scholar 

  29. Holden, M. T., et al. (2004). Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 101, 9786–9791.

    Article  CAS  Google Scholar 

  30. Kaneda, K., et al. (2001). An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp. Strain CL190. PNAS, 98(3), 932–937.

    Article  CAS  Google Scholar 

  31. Devarenne, T. P., Ghosh, A., & Chappell, J. (2002). Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiology, 129, 1096–1106.

    Article  Google Scholar 

  32. Gu, P., Ishii, Y., Spencer, T. A., & Shechter, I. (1998). Function–structure studies and identification of three enzyme domains involved in the catalytic activity in rat hepatic squalene synthase. Biological Chemistry, 273, 12515–12525.

    Article  CAS  Google Scholar 

  33. Pandit, J., et al. (2000). Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis. Journal of Biological Chemistry, 275, 30610–30617.

    Article  CAS  Google Scholar 

  34. Lee, S., & Poulter, C. D. (2008). Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1. Journal of Bacteriology, 190, 3808–3816.

    Article  CAS  Google Scholar 

  35. Robinson, G. W., Tsay, Y. H., Kienzle, B. K., Smithmonroy, C. A., & Bishop, R. W. (1993). Conservation between human and fungal squalene synthetases: Similarities in structure, function, and regulation. Molecular and Cellular Biology, 13, 2706–2717.

    CAS  Google Scholar 

  36. Ashby, M. N., & Edwards, P. A. (1990). Elucidation of the deficiency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. Journal of Biological Chemistry, 265(22), 13157–13164.

    CAS  Google Scholar 

  37. Nayar, M. P., Sastry, A. R. K. (1988). Chlorophytum borivilianum. In M. P. Nayar, & A. R. K. Sastry (Eds.), Red data book of Indian plants (Vol. 2) (p. 142). Calcutta: Botanical Survey of India.

  38. Jinting, L., & Zhenghai, H. (2008). Accumulation and dynamic trends of triterpenoid saponins in vegetative organs of Achyranthus bidentata. Journal of Integrative Plant Biology, 764, 1744–1749.

    Google Scholar 

Download references

Acknowledgments

The Authors are thankful to Council of Scientific and Industrial Research (CSIR), India, for providing the financial assistance (Scheme No. 38(1188)08/EMR-II) to carry out the research work. Authors are also grateful to Dr. Rahul Shubhra Mandal, Scientist—I, NICED, Kolkata for his help in analysis of 3D structure prediction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashmir Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (PPT 142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalra, S., Kumar, S., Lakhanpal, N. et al. Characterization of Squalene synthase Gene from Chlorophytum borivilianum (Sant. and Fernand.). Mol Biotechnol 54, 944–953 (2013). https://doi.org/10.1007/s12033-012-9645-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9645-1

Keywords

Navigation