Skip to main content

Advertisement

Log in

Quantification of Rice Blast Disease Progressions Through Taqman Real-Time PCR

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Rice blast caused by Magnaporthe oryzae is a major disease in the paddy field and also a representative model system in the investigation of plant–microbe interactions. This study was undertaken to provide the quantitative evaluation method that specifically determines the amount of M. oryzae proliferation in planta. Real-time PCR was used as the detection strategy in combination with the primer pair and Taqman probe specific to MHP1, a unigene encoding HYDROPHOBIN that is indispensable for normal virulence expression. Based on the crossing point values from the PCR reactions containing a series of increasing concentration of cloned amplicon or fungal genomic DNA, correlation among the template’s copy number or its amount and amplification pattern was calculated. Reliability of this equation was further confirmed using the DNA samples from the rice leaves infected with compatible or incompatible strains of M. oryzae. The primer pair used in the Taqman real-time PCR reaction can recognize the existence of fungal DNA as low as 1 pg. In sum, our quantitative evaluation system is applicable and reliable in the blast diagnosis and also in the estimation of objective blast disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Valent, B., & Chumley, F. G. (1991). Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annual Review of Phytopathology, 29, 443–467.

    Article  CAS  Google Scholar 

  2. Widawsky, D. A., & O’Toole, J. C. (1990). Prioritizing the rice biotechnology research agenda for eastern India. New York: The Rockefeller Foundation.

    Google Scholar 

  3. Lee, F. N. (1994). Rice breeding programs, blast epidemics and blast management in the United States. In R. S. Zeigler, et al. (Eds.), Rice blast disease (pp. 489–500). Wallingford: CABI and International Rice Research Institute.

    Google Scholar 

  4. Cho, Y. C., Suh, J. P., Jeung, J. U., Roh, J. H., Yang, C. I., Oh, M. K., et al. (2009). Resistance genes and their effect on blast in Korean rice varieties (Oryza sativa L.). In G. L. Wang & B. Valent (Eds.), Advances in genetics, genomics and control of rice blast disease (pp. 291–304). Berlin: Springer.

    Chapter  Google Scholar 

  5. Endo, T., Nakamura, T., Yonemaru, J., Ishikawa, G., Yamaguchi, M., Kataoka, T., et al. (2009). Genetic analysis of resistance against bacterial leaf blight and leaf blast disease in the Japanese rice cultivar Asominori. In G. L. Wang & B. Valent (Eds.), Advances in genetics, genomics and control of rice blast disease (pp. 291–304). Berlin: Springer.

    Google Scholar 

  6. Sobrizal, S., & Anggiani, S. (2007). Rice blast disease in Indonesia. In JIRCAS Working Report, 53, pp. 71–79.

  7. Howard, R. J., Ferrari, M. A., Roach, D. H., & Money, N. P. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proceedings of the National Academy of Science of United States of America, 88, 11281–11284.

    Article  CAS  Google Scholar 

  8. Heath, M. C., Valent, B., Howard, R. J., & Chumley, F. G. (1990). Correlations between cytologically detected plant-fungal interactions and pathogenicity of Magnaporthe grisea toward weeping lovegrass. Phytopathology, 80, 1382–1386.

    Article  Google Scholar 

  9. Heath, M. C., Howard, R. J., Valent, B., & Chumley, F. G. (1992). Ultrastructural interactions of one strain of Magnaporthe grisea with goosegrass and weeping lovegrass. Canadian Journal of Botany, 70, 779–787.

    Article  Google Scholar 

  10. Tucker, S. L., & Talbot, N. J. (2001). Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39, 385–401.

    Article  CAS  Google Scholar 

  11. Ebbole, D. J. (2007). Magnaporthe as a model for understanding host–pathogen interactions. Annual Review of Phytopathology, 45, 437–456.

    Article  CAS  Google Scholar 

  12. Su’udi, M., Kim, M. G., Park, S. R., Hwang, D. J., Bae, S. C., & Ahn, I. P. (2011). Arabidopsis cell death in compatible and incompatible interactions with Alternaria brassicicola. Molecules and Cells, 31, 593–601.

    Article  Google Scholar 

  13. Cho, Y. C., Kwon, S. W., Suh, J. P., Kim, J. J., Lee, J. H., Roh, J. H., et al. (2008). QTLs identification and confirmation of field resistance to leaf blast in temperate japonica rice (Oryza sativa L.). Journal of Crop Science and Biotechnology, 11, 269–276.

    Google Scholar 

  14. Kim, B. R., Roh, J. H., Choi, S. H., Ahn, S. W., & Han, S. S. (2004). Durability of rice cultivars to blast in Korea by sequential planting method. Korean Journal of Breeding, 36, 350–356.

    Google Scholar 

  15. International Rice Research Institute. (1988). Standard Evaluation System for Rice, International Rice Testing Program. Los Banos: International Rice Testing Program.

    Google Scholar 

  16. Narayanasamy, P. (2001). Plant pathogen detection and disease diagnosis. New York: Marcel Dekker Inc.

    Google Scholar 

  17. Skottrup, P., Hearty, S., Frøkiær, H., Leonard, P., Hejgaard, J., O’Kennedy, R., et al. (2007). Detection of fungal spores using a generic surface plasmon resonance immunoassay. Biosensors & Bioelectronics, 22, 2724–2729.

    Article  CAS  Google Scholar 

  18. Frederick, R. D., Snyder, K. E., Tooley, P. E., Berthier-Schaad, Y., Peterson, G. B., Bonde, M. R., et al. (2000). Identification and differentiation of Tilletia indica and T. walker using the polymerase chain reaction. Phytopathology, 90, 951–960.

    Article  CAS  Google Scholar 

  19. Chadha, S., & Gopalakrishna, T. (2006). Detection of Magnaporthe grisea in infested rice seeds using polymerase chain reaction. Journal of Applied Microbiology, 100, 1147–1153.

    Article  CAS  Google Scholar 

  20. Torres-Calzada, C., Tapia-Tussell, R., Quijano-Ramayo, A., Martin-Mex, R., Rojas-Herrera, R., Higuera-Ciapara, I., et al. (2011). A species-specific polymerase chain reaction assay for rapid and sensitive detection of Colletotrichum capsici. Molecular Biotechnology, 49, 48–55.

    Article  CAS  Google Scholar 

  21. Lievens, B., Brouwer, M., Vanachter, A. C., Cammue, B. P., & Thomma, B. P. (2006). Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Science, 171, 155–165.

    Article  CAS  Google Scholar 

  22. Selma, M. V., Martínez-Culebras, P. V., & Aznar, R. (2008). Real-time PCR based procedures for detection and quantification of Aspergillus carbonarius in wine grapes. International Journal of Food Microbiology, 122, 126–134.

    Article  CAS  Google Scholar 

  23. Borneman, J., & Hartin, R. J. (2000). PCR primers that amplify fungal rRNA genes from environmental samples. Applied and Environmental Microbiology, 66, 4356–4360.

    Article  CAS  Google Scholar 

  24. Martin, K. J., & Rygiewicz, P. T. (2005). Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiology, 5, 28.

    Article  Google Scholar 

  25. Sone, T., Fukiya, S., Kodama, M., & Tomita, F. (2000). Molecular structure of rDNA repeat unit in Magnaporthe grisea. Bioscience, Biotechnology, and Biochemistry, 64, 1733–1736.

    Article  CAS  Google Scholar 

  26. Kim, S., Ahn, I. P., Rho, H. S., & Lee, Y. H. (2005). MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Molecular Microbiology, 57, 1224–1237.

    Article  CAS  Google Scholar 

  27. Dhingra, O. D., & Sinclair, J. B. (1985). Basic plant pathology methods. Boca Raton, FL: CRC Press.

    Google Scholar 

  28. Ahn, I. P., Kim, S., Kang, S., Suh, S. C., & Lee, Y. H. (2005). Rice defense mechanisms against Cochliobolus miyabeanus and Magnaporthe grisea are distinct. Phytopathology, 95, 1248–1255.

    Article  CAS  Google Scholar 

  29. Kim, S., Ahn, I. P., Park, C. H., Park, S. G., Park, S. Y., Jwa, N. S., et al. (2001). Molecular characterization of the cDNA encoding an acidic isoform of PR-1 protein in rice. Molecules and Cells, 11, 115–121.

    CAS  Google Scholar 

  30. Stewart, C. N., & Via, L. E. (1993). A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. BioTechniques, 14, 748–751.

    CAS  Google Scholar 

  31. Feinberg, A. P., & Vogelstein, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry, 132, 6–13.

    Article  CAS  Google Scholar 

  32. Simon, U. K., & Weiß, M. (2008). Intragenomic variation of fungal ribosomal genes is higher than previously thought. Molecular Biology and Evolution, 25, 2251–2254.

    Article  CAS  Google Scholar 

  33. Qi, M., & Yang, Y. (2002). Quantification of Magnaporthe grisea during infection of rice plants using real-time PCR and northern blot/phosphoimaging analysis. Phytopathology, 92, 870–876.

    Article  CAS  Google Scholar 

  34. Harmon, P. F., Dunkle, L. D., & Latin, R. (2003). A rapid PCR-based method for the detection of Magnaporthe oryzae from infected perennial ryegrass. Plant Disease, 87, 1072–1076.

    Article  CAS  Google Scholar 

  35. Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Research Program for Agricultural Science and Technology Development (Project No. PJ008840) and the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center No. PJ008021072011), Rural Development Administration, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Pyung Ahn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 450 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su’udi, M., Kim, J., Park, JM. et al. Quantification of Rice Blast Disease Progressions Through Taqman Real-Time PCR. Mol Biotechnol 55, 43–48 (2013). https://doi.org/10.1007/s12033-012-9632-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9632-6

Keywords

Navigation