Skip to main content
Log in

A Low-Copy-Number Plasmid for Retrieval of Toxic Genes from BACs and Generation of Conditional Targeting Constructs

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial Artificial Chromosome (BAC) clones are widely used for retrieving genomic DNA sequences for gene targeting. In this study, low-copy-number plasmids pBAC-FB, pBAC-FC, and pBAC-DE, which carry the F plasmid replicon, were generated from pBACe3.6. pBAC-FB was successfully used to retrieve a sequence of a BAC that was resistant to retrieval by a high-copy-number plasmid via λ Red-mediated recombineering (gap-repair cloning). This plasmid was also used to retrieve two other genes from BAC, indicating its general usability retrieving genes from BAC. The retrieved genes were manipulated in generating targeting vectors for gene knockouts by recombineering. The functionality of the targeting vector was further validated in a targeting experiment with C57BL/6 embryonic stem cells. The low-copy-number plasmid pBAC-FB is a plasmid of choice to retrieve toxic DNA sequences from BACs and to manipulate them to generate gene-targeting constructs by recombineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Amp:

Ampicillin

AmpR:

Ampicillin resistance

BAC:

Bacterial artificial chromosome

Cam:

Chloramphenicol

CamR:

Chloramphenicol resistance

FNFL :

FRT-Neo-FRT-loxP

Kan:

Kanamycin

LB:

Luria-Bertani medium

LB+Amp:

LB medium containing ampicillin

LB+Cam:

LB medium containing chloramphenicol

LB+Kan:

LB medium containing kanamycin

LNL :

loxP-Neo-loxP

PCR:

Polymerase chain reaction

References

  1. Yang, X. W., Model, P., & Heintz, N. (1997). Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nature Biotechnology, 15, 859–865.

    Article  CAS  Google Scholar 

  2. Muyrers, J. P., Zhang, Y., Testa, G., & Stewart, A. F. (1999). Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Research, 27, 1555–1557.

    Article  CAS  Google Scholar 

  3. Liu, P., Jenkins, N. A., & Copeland, N. G. (2003). A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Research, 13, 476–484.

    Article  CAS  Google Scholar 

  4. Lauth, M., Spreafico, F., Dethleffsen, K., & Meyer, M. (2002). Stable and efficient cassette exchange under non-selectable conditions by combined use of two site-specific recombinases. Nucleic Acids Research, 30, e115.

    Article  Google Scholar 

  5. Testa, G., Zhang, Y., Vintersten, K., Benes, V., Pijnappel, W. W., Chambers, I., et al. (2003). Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nature Biotechnology, 21, 443–447.

    Article  CAS  Google Scholar 

  6. Cotta-de-Almeida, V., Schonhoff, S., Shibata, T., Leiter, A., & Snapper, S. B. (2003). A new method for rapidly generating gene-targeting vectors by engineering BACs through homologous recombination in bacteria. Genome Research, 13, 2190–2194.

    Article  CAS  Google Scholar 

  7. van Kessel, J. C., & Hatfull, G. F. (2008). Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: Characterization of antimycobacterial drug targets. Molecular Microbiology, 67, 1094–1107.

    Article  Google Scholar 

  8. Wong, Q. N., Ng, V. C., Lin, M. C., Kung, H. F., Chan, D., & Huang, J. D. (2005). Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acids Research, 33, e59.

    Article  Google Scholar 

  9. Bouchard, M., Souabni, A., & Busslinger, M. (2004). Tissue-specific expression of Cre recombinase from the Pax8 locus. Genesis, 38, 105–109.

    Article  CAS  Google Scholar 

  10. Copeland, N. G., Jenkins, N. A., & Court, D. L. (2001). Recombineering: A powerful new tool for mouse functional genomics. Nature Reviews Genetics, 2, 769–779.

    Article  CAS  Google Scholar 

  11. Voehringer, D., Wu, D., Liang, H. E., & Locksley, R. M. (2009). Efficient generation of long-distance conditional alleles using recombineering and a dual selection strategy in replicate plates. BMC Biotechnology, 9, 69.

    Article  Google Scholar 

  12. Frengen, E., Weichenhan, D., Zhao, B., Osoegawa, K., van Geel, M., & de Jong, P. J. (1999). A modular, positive selection bacterial artificial chromosome vector with multiple cloning sites. Genomics, 58, 250–253.

    Article  CAS  Google Scholar 

  13. Barnes, W. M. (1977). Plasmid detection and sizing in single colony lysates. Science, 195, 393–394.

    Article  CAS  Google Scholar 

  14. Tompers, D. M., & Labosky, P. A. (2004). Electroporation of murine embryonic stem cells: a step-by-step guide. Stem Cells, 22, 243–249.

    Article  Google Scholar 

  15. Craig, N. L. (1991). Tn7: A target site-specific transposon. Molecular Microbiology, 5, 2569–2573.

    Article  CAS  Google Scholar 

  16. Gimble, F. S., & Stephens, B. W. (1995). Substitutions in conserved dodecapeptide motifs that uncouple the DNA binding and DNA cleavage activities of PI-SceI endonuclease. Journal of Biological Chemistry, 270, 5849–5856.

    Article  CAS  Google Scholar 

  17. Gan, Y., & Zhao, X. T. (2005). A new combination of mutated loxPs in a vector for construction of phage antibody libraries. Acta Biochimica et Biophysica Sinica (Shanghai), 37, 495–500.

    Article  CAS  Google Scholar 

  18. Boyd, A. C., Popp, F., Michaelis, U., Davidson, H., Davidson-Smith, H., Doherty, A., et al. (1999). Insertion of natural intron 6a–6b into a human cDNA-derived gene therapy vector for cystic fibrosis improves plasmid stability and permits facile RNA/DNA discrimination. Journal of Gene Medicine, 1, 312–321.

    Article  CAS  Google Scholar 

  19. Futterer, J., Gordon, K., Pfeiffer, P., & Hohn, T. (1988). The instability of a recombinant plasmid, caused by a prokaryotic-like promoter within the eukaryotic insert, can be alleviated by expression of antisense RNA. Gene, 67, 141–145.

    Article  CAS  Google Scholar 

  20. Shi, J., & Biek, D. P. (1995). A versatile low-copy-number cloning vector derived from plasmid F. Gene, 164, 55–58.

    Article  CAS  Google Scholar 

  21. Chan, W., Costantino, N., Li, R., Lee, S. C., Su, Q., Melvin, D., et al. (2007). A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Research, 35, e64.

    Article  Google Scholar 

  22. Anthony, L. C., Suzuki, H., & Filutowicz, M. (2004). Tightly regulated vectors for the cloning and expression of toxic genes. Journal of Microbiological Methods, 58, 243–250.

    Article  CAS  Google Scholar 

  23. Wang, R. F., & Kushner, S. R. (1991). Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene, 100, 195–199.

    Article  CAS  Google Scholar 

  24. Koop, A. H., Hartley, M. E., & Bourgeois, S. (1987). A low-copy-number vector utilizing beta-galactosidase for the analysis of gene control elements. Gene, 52, 245–256.

    Article  CAS  Google Scholar 

  25. Stoker, N. G., Fairweather, N. F., & Spratt, B. G. (1982). Versatile low-copy-number plasmid vectors for cloning in Escherichia coli. Gene, 18, 335–341.

    Article  CAS  Google Scholar 

  26. Seminara, S. B., Messager, S., Chatzidaki, E. E., Thresher, R. R., Acierno, J. S., Jr, Shagoury, J. K., et al. (2003). The GPR54 gene as a regulator of puberty. New England Journal of Medicine, 349, 1614–1627.

    Article  CAS  Google Scholar 

  27. Young, M. (1983). The mechanism of insertion of a segment of heterologous DNA into the chromosome of Bacillus subtilis. Journal of General Microbiology, 129, 1497–1512.

    CAS  Google Scholar 

  28. Le Borgne, S., Bolivar, F., & Gosset, G. (2004). Plasmid vectors for marker-free chromosomal insertion of genetic material in Escherichia coli. Methods in Molecular Biology, 267, 135–143.

    Google Scholar 

  29. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G., & Court, D. L. (2009). Recombineering: A homologous recombination-based method of genetic engineering. Nature Protocols, 4, 206–223.

    Article  CAS  Google Scholar 

  30. Templeton, N. S., Roberts, D. D., & Safer, B. (1997). Efficient gene targeting in mouse embryonic stem cells. Gene Therapy, 4, 700–709.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Inje Research and Scholarship Foundation in 2012, by a grant from Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2011-0011173), and by a grant UO1 HD066432 from National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbum Koo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, G., Wolfe, A., Ko, C. et al. A Low-Copy-Number Plasmid for Retrieval of Toxic Genes from BACs and Generation of Conditional Targeting Constructs. Mol Biotechnol 54, 504–514 (2013). https://doi.org/10.1007/s12033-012-9591-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9591-y

Keywords

Navigation