Skip to main content

Making BAC Transgene Constructs with Lambda-Red Recombineering System for Transgenic Animals or Cell Lines

  • Protocol
  • First Online:
Bacterial Artificial Chromosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1227))

Abstract

The genomic DNA libraries based on Bacteria Artificial Chromosomes (BAC) are the foundation of whole genomic mapping, sequencing, and annotation for many species like mice and humans. With their large insert size, BACs harbor the gene-of-interest and nearby transcriptional regulatory elements necessary to direct the expression of the gene-of-interest in a temporal and cell-type specific manner. When replacing a gene-of-interest with a transgene in vivo, the transgene can be expressed with the same patterns and machinery as that of the endogenous gene. This chapter describes in detail a method of using lambda-red recombineering to make BAC transgene constructs with the integration of a transgene into a designated location within a BAC. As the final BAC construct will be used for transfection in cell lines or making transgenic animals, specific considerations with BAC transgenes such as genotyping, BAC coverage and integrity as well as quality of BAC DNA will be addressed. Not only does this approach provide a practical and effective way to modify large DNA constructs, the same recombineering principles can apply to smaller high copy plasmids as well as to chromosome engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gong S, Zheng C, Doughty ML et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925

    Article  PubMed  CAS  Google Scholar 

  2. Poser I, Sarov M, Hutchins JRA et al (2008) BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Meth 5(5):409–415

    Article  CAS  Google Scholar 

  3. Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotech 15(9):859–865

    Article  CAS  Google Scholar 

  4. Copeland NG, Jenkins NA, Court DL (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2(10):769–779

    Article  PubMed  CAS  Google Scholar 

  5. Suster M, Sumiyama K, Kawakami K (2009) Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 10(1):477

    Article  PubMed  PubMed Central  Google Scholar 

  6. Muyrers JPP, Zhang Y, Benes V et al (2000) Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep 1(3):239–243

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97(12):6640–6645

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Zhang Y, Buchholz F, Muyrers JPP et al (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–128

    Article  PubMed  CAS  Google Scholar 

  9. Lee EC, Yu D, Martinez de Velasco J et al (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73(1):56–65

    Article  PubMed  CAS  Google Scholar 

  10. Bouvier J, Cheng J-G (2001) Recombineering-based procedure for creating Cre/loxP conditional knockouts in the mouse. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, NY

    Google Scholar 

  11. Hollenback SM, Lyman S, Cheng J (2001) Recombineering-based procedure for creating BAC transgene constructs for animals and cell lines. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, NY

    Google Scholar 

  12. Baron U, Gossen M, Bujard H (1997) Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res 25(14):2723–2729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244(2):305–318

    Article  PubMed  CAS  Google Scholar 

  14. Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14(4):381–392

    Article  PubMed  CAS  Google Scholar 

  15. Fritze CE, Anderson TR (2000) Epitope tagging: general method for tracking recombinant proteins. Methods Enzymol 327:3–16

    Article  PubMed  CAS  Google Scholar 

  16. Martinez-Salas E (1999) Internal ribosome entry site biology and its use in expression vectors. Curr Opin Biotechnol 10(5):458–464

    Article  PubMed  CAS  Google Scholar 

  17. Nott A, Meislin SH, Moore MJ (2003) A quantitative analysis of intron effects on mammalian gene expression. RNA 9(5):607–617

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zufferey R, Donello JE, Trono D et al (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73(4):2886–2892

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Cockerill PN, Garrard WT (1986) Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 44(2):273–282

    Article  PubMed  CAS  Google Scholar 

  20. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Meth 4(9):721–726

    Article  CAS  Google Scholar 

  21. Bode J, Schlake T, Iber M et al (2000) The transgeneticist’s toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol Chem 381(9–10):801–813

    PubMed  CAS  Google Scholar 

  22. Bochkov YA, Palmenberg AC (2006) Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location. Biotechniques 41(3):283–284, 286, 288

    Article  PubMed  CAS  Google Scholar 

  23. Provost E, Rhee J, Leach SD (2007) Viral 2A peptides allow expression of multiple proteins from a single ORF in transgenic zebrafish embryos. Genesis 45(10):625–629

    Article  PubMed  CAS  Google Scholar 

  24. Sheng Y, Mancino V, Birren B (1995) Transformation of Escherichia coli with large DNA molecules by electroporation. Nucleic Acids Res 23(11):1990–1996

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Higuchi R, Krummel B, Saiki R (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16(15):7351–7367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Osoegawa K, Tateno M, Woon PY et al (2000) Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res 10(1):116–128

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Hill F, Benes V, Thomasova D et al (2000) BAC trimming: minimizing clone overlaps. Genomics 64(1):111–113

    Article  PubMed  CAS  Google Scholar 

  28. Jong PD (2013) CHORI: Children’s Hospital Oakland Research Institute. Available from: https://bacpac.chori.org/about.htm. Accessed on August 24, 2013

  29. Shen P, Huang HV (1986) Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112(3):441–457

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. B.L. Wanner of Purdue University for the pKD46 plasmid, which was distributed by the E. Coli Genetic Stock Center at Yale. The authors also thank Dr. N. Copeland for providing DY380 and EL250/350. The protocol described here has been used in the UNC Neuroscience Center’s BAC Engineering Core and is supported by an NINDS Center Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JrGang Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Holmes, S., Lyman, S., Hsu, JK., Cheng, J. (2015). Making BAC Transgene Constructs with Lambda-Red Recombineering System for Transgenic Animals or Cell Lines. In: Narayanan, K. (eds) Bacterial Artificial Chromosomes. Methods in Molecular Biology, vol 1227. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1652-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1652-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1651-1

  • Online ISBN: 978-1-4939-1652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics