Skip to main content
Log in

Selection of Internal Reference Genes for Normalization of Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) Analysis in the Canine Brain and Other Organs

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive technique for quantifying gene expression. To analyze qRT-PCR data accurately, suitable reference genes that show consistent expression patterns across different tissues and experimental conditions should be selected. The objective of this study was to obtain the most stable reference genes in dogs, using samples from 13 different brain tissues and 10 other organs. 16 well-known candidate reference genes were analyzed by the geNorm, NormFinder, and BestKeeper programs. Brain tissues were derived from several different anatomical regions, including the forebrain, cerebrum, diencephalon, hindbrain, and metencephalon, and grouped accordingly. Combination of the three different analyses clearly indicated that the ideal reference genes are ribosomal protien S5 (RPS5) in whole brain, RPL8 and RPS5 in whole body tissues, RPS5 and RPS19 in the forebrain and cerebrum, RPL32 and RPS19 in the diencephalon, GAPDH and RPS19 in the hindbrain, and MRPS7 and RPL13A in the metencephalon. These genes were identified as ideal for the normalization of qRT-PCR results in the respective tissues. These findings indicate more suitable and stable reference genes for future studies of canine gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology. 3, RESEARCH0034.

  2. Bustin, S. A., & Nolan, T. (2004). Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. Journal of Biomolecular Techniques, 15, 155–166.

    Google Scholar 

  3. Wood, S. H., Clements, D. N., McEwan, N. A., Nuttall, T., & Carter, S. D. (2008). Reference genes for canine skin when using quantitative real-time PCR. Veterinary Immunology and Immunopathology, 126, 392–395.

    Article  CAS  Google Scholar 

  4. Schmittgen, T. D., & Zakrajsek, B. A. (2000). Effect of experimental treatment on housekeeping gene expression: Validation by real-time, quantitative RT-PCR. Journal of Biochemical and Biophysical Methods, 46, 69–81.

    Article  CAS  Google Scholar 

  5. Yperman, J., De Visscher, G., Holvoet, P., & Flameng, W. (2004). Beta-actin cannot be used as a control for gene expression in ovine interstitial cells derived from heart valves. Journal of Heart Valve Disease, 13, 848–853.

    Google Scholar 

  6. Parker, H. G., Shearin, A. L., & Ostrander, E. A. (2010). Man’s best friend becomes biology’s best in show: Genome analyses in the domestic dog. Annual Review of Genetics, 44, 309–336.

    Article  CAS  Google Scholar 

  7. Shearin, A. L., & Ostrander, E. A. (2010). Leading the way: Canine models of genomics and disease. Disease Models & Mechanisms, 3, 27–34.

    Article  CAS  Google Scholar 

  8. Sarasa, M., & Pesini, P. (2009). Natural non-transgenic animal models for research in Alzheimer’s disease. Current Alzheimer Research, 6, 171–178.

    Article  CAS  Google Scholar 

  9. Sarasa, L., Gallego, C., Monleon, I., Olvera, A., Canudas, J., Montanes, M., et al. (2010). Cloning, sequencing and expression in the dog of the main amyloid precursor protein isoforms and some of the enzymes related with their processing. Neuroscience, 171, 1091–1101.

    Article  CAS  Google Scholar 

  10. Cummings, B. J., Head, E., Afagh, A. J., Milgram, N. W., & Cotman, C. W. (1996). Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiology of Learning and Memory, 66, 11–23.

    Article  CAS  Google Scholar 

  11. Bernedo, V., Insua, D., Suarez, M. L., Santamarina, G., Sarasa, M., & Pesini, P. (2009). Beta-amyloid cortical deposits are accompanied by the loss of serotonergic neurons in the dog. The Journal of Comparative Neurology, 513, 417–429.

    Article  CAS  Google Scholar 

  12. Higgins, M. A., Berridge, B. R., Mills, B. J., Schultze, A. E., Gao, H., Searfoss, G. H., et al. (2003). Gene expression analysis of the acute phase response using a canine microarray. Toxicological Sciences, 74, 470–484.

    Article  CAS  Google Scholar 

  13. Thomson, S. A., Kennerly, E., Olby, N., Mickelson, J. R., Hoffmann, D. E., Dickinson, P. J., et al. (2005). Microarray analysis of differentially expressed genes of primary tumors in the canine central nervous system. Veterinary Pathology, 42, 550–558.

    Article  CAS  Google Scholar 

  14. Clark, L. A., Wahl, J. M., Steiner, J. M., Zhou, W., Ji, W., Famula, T. R., et al. (2005). Linkage analysis and gene expression profile of pancreatic acinar atrophy in the German Shepherd Dog. Mammalian Genome, 16, 955–962.

    Article  CAS  Google Scholar 

  15. Tamburini, B. A., Phang, T. L., Fosmire, S. P., Scott, M. C., Trapp, S. C., Duckett, M. M., et al. (2010). Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma. BMC Cancer, 10, 619.

    Article  CAS  Google Scholar 

  16. Klopfleisch, R., Lenze, D., Hummel, M., & Gruber, A. D. (2010). Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles. BMC Cancer, 10, 618.

    Article  CAS  Google Scholar 

  17. VanGuilder, H. D., Vrana, K. E., & Freeman, W. M. (2008). Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques, 44, 619–626.

    Article  CAS  Google Scholar 

  18. Ahn, K., Huh, J. W., Kim, D. S., Ha, H. S., Kim, Y. J., Lee, J. R., et al. (2010). Quantitative analysis of alternative transcripts of human PCDH11X/Y genes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153B, 736–744.

    CAS  Google Scholar 

  19. Ahn, K., Huh, J. W., Park, S. J., Kim, D. S., Ha, H. S., Kim, Y. J., et al. (2008). Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta) tissues. BMC Molecular Biology, 9, 78.

    Article  Google Scholar 

  20. Boda, E., Pini, A., Hoxha, E., Parolisi, R., & Tempia, F. (2009). Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. Journal of Molecular Neuroscience, 37, 238–253.

    Article  CAS  Google Scholar 

  21. Kessler, Y., Helfer-Hungerbuehler, A. K., Cattori, V., Meli, M. L., Zellweger, B., Ossent, P., et al. (2009). Quantitative TaqMan real-time PCR assays for gene expression normalisation in feline tissues. BMC Molecular Biology, 10, 106.

    Article  Google Scholar 

  22. Nygard, A. B., Jorgensen, C. B., Cirera, S., & Fredholm, M. (2007). Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Molecular Biology, 8, 67.

    Article  Google Scholar 

  23. Perez, R., Tupac-Yupanqui, I., & Dunner, S. (2008). Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Molecular Biology, 9, 79.

    Article  Google Scholar 

  24. Lisowski, P., Pierzchala, M., Goscik, J., Pareek, C. S., & Zwierzchowski, L. (2008). Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. Journal of Applied Genetics, 49, 367–372.

    Article  Google Scholar 

  25. Spinsanti, G., Panti, C., Lazzeri, E., Marsili, L., Casini, S., Frati, F., et al. (2006). Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba) skin biopsies. BMC Molecular Biology, 7, 32.

    Article  Google Scholar 

  26. Olsvik, P. A., Lie, K. K., Jordal, A. E., Nilsen, T. O., & Hordvik, I. (2005). Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Molecular Biology, 6, 21.

    Article  Google Scholar 

  27. Sacco, T., Boda, E., Hoxha, E., Pizzo, R., Cagnoli, C., Brusco, A., et al. (2010). Mouse brain expression patterns of Spg7, Afg3l1, and Afg3l2 transcripts, encoding for the mitochondrial m-AAA protease. BMC Neuroscience, 11, 55.

    Article  Google Scholar 

  28. Boda, E., Hoxha, E., Pini, A., Montarolo, F., & Tempia, F. (2011). Brain expression of Kv3 subunits during development, adulthood and aging and in a murine model of alzheimer’s disease. Journal of Molecular Neuroscience, 46, 606–615.

    Article  Google Scholar 

  29. Robert-Tissot, C., Ruegger, V. L., Cattori, V., Meli, M. L., Riond, B., Gomes-Keller, M. A., et al. (2011). The innate antiviral immune system of the cat: Molecular tools for the measurement of its state of activation. Veterinary Immunology and Immunopathology, 143, 269–281.

    Article  CAS  Google Scholar 

  30. Meurens, F., Girard-Misguich, F., Melo, S., Grave, A., Salmon, H., & Guillen, N. (2009). Broad early immune response of porcine epithelial jejunal IPI-2I cells to Entamoeba histolytica. Molecular Immunology, 46, 927–936.

    Article  CAS  Google Scholar 

  31. Cirera, S., Birck, M., Busk, P. K., & Fredholm, M. (2010). Expression profiles of miRNA-122 and its target CAT1 in minipigs (Sus scrofa) fed a high-cholesterol diet. Comparative Medicine, 60, 136–141.

    CAS  Google Scholar 

  32. Robakowska-Hyzorek, D., Oprzadek, J., Zelazowska, B., Olbromski, R., & Zwierzchowski, L. (2010). Effect of the g.-723G–>T polymorphism in the bovine myogenic factor 5 (Myf5) gene promoter region on gene transcript level in the longissimus dorsi muscle and on meat traits of Polish Holstein–Friesian cattle. Biochemical Genetics, 48, 450–464.

    Article  CAS  Google Scholar 

  33. Pedrera, M., Gomez-Villamandos, J. C., Molina, V., Risalde, M. A., Rodriguez-Sanchez, B., & Sanchez-Cordon, P. J. (2011). Quantification and determination of spread mechanisms of bovine viral diarrhoea virus in blood and tissues from colostrum-deprived calves during an experimental acute infection induced by a non-cytopathic genotype 1 strain. Transboundary and Emerging Diseases. doi:10.1111/j.1865-1682.2011.01281.x.

  34. Braun, A., Breuss, M., Salzer, M. C., Flint, J., Cowan, N. J., & Keays, D. A. (2010). Tuba8 is expressed at low levels in the developing mouse and human brain. American Journal of Human Genetics, 86, 819–822. author reply 822–813.

    Article  Google Scholar 

  35. Chimura, N., Shibata, S., Kimura, T., Kondo, N., Mori, T., Hoshino, Y., et al. (2011). Suitable reference genes for quantitative real-time rt-pcr in total RNA extracted from canine whole blood using the PAXgene system. Journal of Veterinary Medical Science, 73, 1101–1104.

    Article  Google Scholar 

  36. Schlotter, Y. M., Veenhof, E. Z., Brinkhof, B., Rutten, V. P., Spee, B., Willemse, T., et al. (2009). A GeNorm algorithm-based selection of reference genes for quantitative real-time PCR in skin biopsies of healthy dogs and dogs with atopic dermatitis. Veterinary Immunology and Immunopathology, 129, 115–118.

    Article  CAS  Google Scholar 

  37. Maccoux, L. J., Clements, D. N., Salway, F., & Day, P. J. (2007). Identification of new reference genes for the normalisation of canine osteoarthritic joint tissue transcripts from microarray data. BMC Molecular Biology, 8, 62.

    Article  Google Scholar 

  38. Ayers, D., Clements, D. N., Salway, F., & Day, P. J. (2007). Expression stability of commonly used reference genes in canine articular connective tissues. BMC Veterinary Research, 3, 7.

    Article  Google Scholar 

  39. Vage, J., Bonsdorff, T. B., Arnet, E., Tverdal, A., & Lingaas, F. (2010). Differential gene expression in brain tissues of aggressive and non-aggressive dogs. BMC Veterinary Research, 6, 34.

    Article  Google Scholar 

  40. Etschmann, B., Wilcken, B., Stoevesand, K., von der Schulenburg, A., & Sterner-Kock, A. (2006). Selection of reference genes for quantitative real-time PCR analysis in canine mammary tumors using the GeNorm algorithm. Veterinary Pathology, 43, 934–942.

    Article  CAS  Google Scholar 

  41. Peters, I. R., Peeters, D., Helps, C. R., & Day, M. J. (2007). Development and application of multiple internal reference (housekeeper) gene assays for accurate normalisation of canine gene expression studies. Veterinary Immunology and Immunopathology, 117, 55–66.

    Article  CAS  Google Scholar 

  42. Brinkhof, B., Spee, B., Rothuizen, J., & Penning, L. C. (2006). Development and evaluation of canine reference genes for accurate quantification of gene expression. Analytical Biochemistry, 356, 36–43.

    Article  CAS  Google Scholar 

  43. Andersen, C. L., Jensen, J. L., & Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250.

    Article  CAS  Google Scholar 

  44. Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnology Letters, 26, 509–515.

    Article  CAS  Google Scholar 

  45. Rozen, S., & Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology, 132, 365–386.

    CAS  Google Scholar 

  46. Chimura, N., Shibata, S., Kimura, T., Kondo, N., Mori, T., Hoshino, Y., et al. (2011). Suitable reference genes for quantitative real-time RT-PCR in total RNA extracted from canine whole blood using the PAXgene(TM) system. The Journal of Veterinary Medical Science, 73(8), 1101–1104.

    Article  Google Scholar 

  47. Tong, Z., Gao, Z., Wang, F., Zhou, J., & Zhang, Z. (2009). Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 10, 71.

    Article  Google Scholar 

  48. Lee, P. D., Sladek, R., Greenwood, C. M., & Hudson, T. J. (2002). Control genes and variability: Absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Research, 12, 292–297.

    Article  Google Scholar 

  49. Barber, R. D., Harmer, D. W., Coleman, R. A., & Clark, B. J. (2005). GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiological Genomics, 21, 389–395.

    Article  CAS  Google Scholar 

  50. Dheda, K., Huggett, J. F., Chang, J. S., Kim, L. U., Bustin, S. A., Johnson, M. A., et al. (2005). The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Analytical Biochemistry, 344, 141–143.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Technology Development Program for Agriculture and Forestry, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea (AGC1021112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Tae Chang.

Additional information

The authors Sang-Je Park, Jae-Won Huh, and Young-Hyun Kim contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1034 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SJ., Huh, JW., Kim, YH. et al. Selection of Internal Reference Genes for Normalization of Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) Analysis in the Canine Brain and Other Organs. Mol Biotechnol 54, 47–57 (2013). https://doi.org/10.1007/s12033-012-9543-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9543-6

Keywords

Navigation