Skip to main content
Log in

Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid

  • Origial Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Expression patterns of candidate genes with important functions in animal metabolism can help to identify potential molecular markers for cattle production traits. Reverse transcription followed by polymerase chain reaction is a method for rapid and accurate mRNA quantification. However, for exact comparison of mRNA quantity in various samples or tissues, it is important to choose appropriate reference genes. In cattle, little information is available on the expression stability of housekeeping genes (HKGs). The aim of the present study is to develop a set of reference genes that can be used for normalization of concentrations of mRNAs of genes expressed in the bovine liver, kidney, pituitary and thyroid. The study was performed on 6-, 9-, and 12-month-old bulls of dairy and meat cattle breeds. Six HKGs were investigated:ACTB, GAPDH, HPRTI, SDHA, TBP, andYWHAZ. The most stably expressed potential reference HKGs differed among tissues/organs examined:ACTB, TBP, YWHAZ, GAPDH, HPR TI, andSDHA in the liver;GAPDH andYWHAZ in the kidney;GAPDH andSDHA in the pituitary; andTBP andHPRTI in the thyroid. The results showed that the use of a single gene fornormalization may lead to relatively large errors, so it is important to use multiple control genes based on a survey of potential reference genes applied to representative samples from specific experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bionaz M, Loor JJ, 2007. Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol Genomics 29: 312–319.

    Article  CAS  PubMed  Google Scholar 

  • Blanquicett C, Johnson MR, Heslin M, Diasio RB, 2002. Housekeeping gene variability in normal and carcinomatous colorectal and liver tissues: applications in pharmacogenomic gene expression studies. 303: 209–214.

  • Bustin SA, 2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29: 23–39.

    Article  CAS  PubMed  Google Scholar 

  • De Ketelaere A, Goossens K, Peelman L, Burvenich C. 2006. Technical note: validation of internal control genes for gene expression analysis in bovine polymorphonuclear leukocytes. J Dairy Sci 89: 4066–4069.

    Article  PubMed  Google Scholar 

  • Deindl E, Boengler K, van Royen N, Schaper W, 2002. Differential expression ofGAPDH and beta3-actin in growing collateral arteries. Mol Cell Biochem 236: 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman LJ, 2006. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol 6: 41.

    Article  PubMed  Google Scholar 

  • Garcia-Crespo D, Juste RA, Hurtado A, 2005. Selection of ovine housekeeping genes for normalisation by real-time RT-PCR; analysis of PrP gene expression and genetic susceptibility to scrapie. BMC Vet Res 1: 3.

    Article  PubMed  Google Scholar 

  • Garrels JI, Gibson W, 1976. Identification and characterization of multiple forms of actin. Cell 9: 793–805.

    Article  CAS  PubMed  Google Scholar 

  • Glare EM, Divjak M, Bailey MJ, Walters EH, 2002. beta-Actin andGAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax 57: 765–770.

    Article  CAS  PubMed  Google Scholar 

  • Goossens K, Van Poucke M, Van Soom A, Vandesompele J, Van Zeveren A, Peelman LJ, 2005. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev Biol 5: 27.

    Article  PubMed  Google Scholar 

  • Hamalainen HK, Tubman JC, Vikman S, Kyrola T, Ylikoski E, Warrington JA, Lahesmaa R, 2001. Identification and validation of endogenous reference genes for expression profiling of T helper cell differentiation by quantitative real-time RT-PCR. Anal Biochem 299: 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Holland NT, Smith MT, Eskenazi B, Bastaki M, 2003. Biological sample collection and processing for molecular epidemiological studies. Mutat Res 543: 217–234.

    Article  CAS  PubMed  Google Scholar 

  • Hocquette JF Lehnert S, Barendse W, Cassar-Malek I, Picard B, 2007. Recent advances in cattle functional genomics applied to beef quality. Animal 1: 159–173.

    Article  CAS  Google Scholar 

  • Janovick-Guretzky NA, Dann HM, Carlson DB, Murphy MR, Loor JJ, Drackley JK, 2007. Housekeeping gene expression in bovine liver is affected by physiological state, feed intake, and dietary treatment. J Dairy Sci 90: 2246–2252.

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Nygard AB, Jorgensen CB, Cirera S, Fredholm M, 2007. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol 8: 67.

    Article  PubMed  Google Scholar 

  • Perez-Novo CA, Claeys C, Speleman F, Van Cauwenberge P, Bachert C, Vandesompele J, 2005. Impact of RNA quality on reference gene expression stability. Biotechniques 39: 52, 54, 56.

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L, 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36.

    Article  PubMed  Google Scholar 

  • Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A, 2004. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313: 856–862.

    Article  CAS  PubMed  Google Scholar 

  • Rhoads RP, McManaman C, Ingvartsen KL, Boisclair YR, 2003. The housekeeping genesGAPDH and cyclophilin are regulated by metabolic state in the liver of dairy cows. J Dairy Sci 86: 3423–3429.

    Article  CAS  PubMed  Google Scholar 

  • Robinson TL, Sutherland IA, Sutherland J, 2007. Validation of candidate bovine reference genes for use with real-time PCR. Vet Immunol Immunopathol 115: 160–165.

    Article  CAS  PubMed  Google Scholar 

  • Svobodová K, Bilek K, Knoll A, 2008. Verification of reference genes for relative quantification of gene expression by real-time reverse transcription PCR in the pig. J Appl Genet 49: 263–265.

    PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F, 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Lisowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisowski, P., Pierzchała, M., Gościk, J. et al. Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. J Appl Genet 49, 367–372 (2008). https://doi.org/10.1007/BF03195635

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195635

Keywords

Navigation