Skip to main content
Log in

A Rapid and Efficient Method for Isolating High Quality DNA from Leaves of Carnivorous Plants from the Drosera Genus

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Drosera rotundifolia, Drosera capensis, and Drosera regia are carnivorous plants of the sundew family, characterized by the presence of stalked and sticky glands on the upper leaf surface, to attract, trap, and digest insects. These plants contain exceptionally high amounts of polysaccharides, polyphenols, and other secondary metabolites that interfere with DNA isolation and subsequent enzymatic reactions such as PCR amplification. We present here a protocol for quick isolation of Drosera DNA with high yield and a high level of purity, by combining a borate extraction buffer with a commercial DNA extraction kit, and a proteinase K treatment during extraction. The yield of genomic DNA is from 13.36 μg/g of fresh weight to 35.29 μg/g depending of the species of Drosera, with a A 260/A 280 ratio of 1.43–1.92. Moreover, the procedure is quick and can be completed in 2.5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EGTA:

Ethylene glycol bis(beta-aminoethylether)-NN′-tetraacetic acid

SDS:

Sodium dodecyl sulfate

PVP:

Polyvinylpyrrolidone

DTT:

Dithiothreitol

References

  1. McPherson, S. (2010). Carnivorous Plants and their Habitats (Vol. Volume 2). London: Redfern Natural History Productions.

    Google Scholar 

  2. Juniper, B. E., Robins, R. J., & Joel, D. M. (1989). The Carnivorous Plants. San Diego: Academic Press.

    Google Scholar 

  3. Marczak, L., Kawiak, A., Ojkowska, E., & Stobiecki, M. (2005). Secondary metabolites in in vitro cultured plants of the genus Drosera. Phytochemical Analysis, 16(3), 143–149.

    Article  CAS  Google Scholar 

  4. Budzianowski, J. (2000). Naphthoquinone glucosides of Drosera gigantea from in vitro cultures. Planta Medica, 66(7), 667–669.

    Article  CAS  Google Scholar 

  5. Krolicka, A., Szpitter, A., Stawujak, K., Baranski, R., Gwizdek-Wisniewska, A., Skrzypczak, A., et al. (2010). Teratomas of Drosera capensis var. alba as a source of naphthoquinone: Ramentaceone. Plant Cell Tissue and Organ Culture, 103(3), 285–292.

    Article  CAS  Google Scholar 

  6. Hook, I. L. I. (2001). Naphthoquinone contents of in vitro cultured plants and cell suspensions of Dionaea muscipula and Drosera species. Plant Cell Tissue and Organ Culture, 67(3), 281–285.

    Article  CAS  Google Scholar 

  7. Tokunaga, T., Takada, N., & Ueda, M. (2004). Mechanism of antifeedant activity of plumbagin, a compound concerning the chemical defense in carnivorous plant. Tetrahedron Letters, 45(38), 7115–7119.

    Article  CAS  Google Scholar 

  8. Putalun, W., Udomsin, O., Yusakul, G., Juengwatanatrakul, T., Sakamoto, S., & Tanaka, H. (2010). Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation. Biotechnology Letters, 32(5), 721–724.

    Article  CAS  Google Scholar 

  9. Paper, D. H., Karall, E., Kremser, M., & Krenn, L. (2005). Comparison of the antiinflammatory effects of Drosera rotundifolia and Drosera madagascariensis in the HET-CAM assay. Phytother Res, 19(4), 323–326.

    Article  CAS  Google Scholar 

  10. Ferreira, D. T., Andrei, C. C., Saridakis, H. O., Tde, J. F., Vinhato, E., Carvalho, K. E., et al. (2004). Antimicrobial activity and chemical investigation of Brazilian Drosera. Memórias do Instituto Oswaldo Cruz, 99(7), 753–755.

    Article  Google Scholar 

  11. Krenn, L., Beyer, G., Pertz, H. H., Karall, E., Kremser, M., Galambosi, B., et al. (2004). In vitro antispasmodic and anti-inflammatory effects of Drosera rotundifolia. Arzneimittelforschung, 54(7), 402–405.

    CAS  Google Scholar 

  12. Melzig, M. F., Pertz, H. H., & Krenn, L. (2001). Anti-inflammatory and spasmolytic activity of extracts from Drosera herba. Phytomedicine, 8(3), 225–229.

    Article  CAS  Google Scholar 

  13. Didry, N., Dubreuil, L., Trotin, F., & Pinkas, M. (1998). Antimicrobial activity of aerial parts of Drosera peltata Smith on oral bacteria. Journal of Ethnopharmacology, 60(1), 91–96.

    Article  CAS  Google Scholar 

  14. Krolicka, A., Szpitter, A., Maciag, M., Biskup, E., Gilgenast, E., Romanik, G., et al. (2009). Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of Drosera aliciae. Biotechnology and Applied Biochemistry, 53(3), 175–184.

    CAS  Google Scholar 

  15. Biteau, F., Bourgaud, F., Gontier, E. & Fèvre, J.-P. (2008). Process for the production of recombinant proteins using carnivorous plants. WO/2008/040599A1. Nancy: Plant Advanced Technologies.

  16. Gowda, D. C., Reuter, G., & Schauer, R. (1983). Structural studies of an acidic polysaccharide from the mucin secreted by Drosera capensis. Carbohydrate Research, 113(1), 113–124.

    Article  CAS  Google Scholar 

  17. Erni, P., Varagnat, M. & McKinley, G.H. (2008). Little shop of horrors: Rheology of the mucilage of Drosera sp., a carnivorous plant. AIP Conference Proceedings Series, 1027(1), 579–581.

  18. Varma, A., Padh, H., & Shrivastava, N. (2007). Plant genomic DNA isolation: An art or a science. Biotechnology Journal, 2(3), 386–392.

    Article  CAS  Google Scholar 

  19. Bekesiova, I., Nap, J. P., & Mlynarova, P. (1999). Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Molecular Biology Reporter, 17, 269–277.

    Article  CAS  Google Scholar 

  20. Pirttilä, A.M., Hirsikorpi, M., Kämäräinen, T., Jaakola, L. & Hohtola, A. (2001). DNA isolation methods for medicinal and aromatic plants. Plant Molecular Biology Reporter, 19, 273a–f.

    Google Scholar 

  21. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.

    Article  CAS  Google Scholar 

  22. Wan, C. Y., & Wilkins, T. A. (1994). A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Analytical Biochemistry, 223(1), 7–12.

    Article  CAS  Google Scholar 

  23. Hall, T. C., Ma, Y., Buchbinder, B. U., Pyne, J. W., Sun, S. M., & Bliss, F. A. (1978). Messenger RNA for G1 protein of French bean seeds: Cell-free translation and product characterization. Proceedings of the National Academy of Sciences of the United States of America, 75(7), 3196–3200.

    Article  CAS  Google Scholar 

  24. Kumar, G. R. K., Eswaran, N., & Johnson, T. S. (2011). Isolation of high-quality RNA from various tissues of Jatropha curcas for downstream applications. Analytical Biochemistry, 413(4), 63–65.

    Article  CAS  Google Scholar 

  25. Samanta, P., Sadhukhan, S., Das, S., Joshi, A., Sen, S.K. & Basu, A. (2011). Isolation of RNA from field-grown jute (Corchorus capsularis) Plant in different developmental stages for effective downstream molecular analysis. Molecular Biotechnology, 49(2),109–115

    Google Scholar 

  26. Wang, X., Tian, W., & Li, Y. (2008). Development of an efficient protocol of RNA isolation from recalcitrant tree tissues. Molecular Biotechnology, 38(1), 57–64.

    Article  CAS  Google Scholar 

  27. Moser, C., Gatto, P., Moser, M., Pindo, M., & Velasco, R. (2004). Isolation of functional RNA from small amounts of different grape and apple tissues. Molecular Biotechnology, 26(2), 95–99.

    Article  CAS  Google Scholar 

  28. Goldenberger, D., Perschil, I., Ritzler, M., & Altwegg, M. (1995). A simple “universal” DNA extraction procedure using SDS and proteinase K is compatible with direct PCR amplification. Genome Research, 4(6), 368–370.

    Article  CAS  Google Scholar 

  29. Hirsikorpi, M., Kamarainen, T., Teeri, T., & Hohtola, A. (2002). Agrobacterium-mediated transformation of round leaved sundew (Drosera rotundifolia L.). Plant Science, 162(4), 537–542.

    Article  CAS  Google Scholar 

  30. Dehestani, A., & Tabar, S. K. K. (2007). A rapid efficient method for DNA isolation from plants with high levels of secondary metabolites. Asian Journal of Plant Sciences, 6(6), 977–981.

    Article  CAS  Google Scholar 

  31. Echevarria-Machado, I., Sanchez-Cach, L. A., Hernandez-Zepeda, C., Rivera-Madrid, R., & Moreno-Valenzuela, O. A. (2005). A simple and efficient method for isolation of DNA in high mucilaginous plant tissues. Molecular Biotechnology, 31(2), 129–135.

    Article  CAS  Google Scholar 

  32. Moyo, M., Amoo, S. O., Bairu, M. W., Finnie, J. F., & Van Staden, J. (2008). Optimising DNA isolation for medicinal plants. South African Journal of Botany, 74(4), 771–775.

    Article  CAS  Google Scholar 

  33. Cheng, Y. J., Guo, W. W., Hua-Lin, Y., Pang, X. M., & Deng, X. (2003). An efficient protocol for genomic DNA extraction from citrus species. Plant Molecular Biology Reporter, 21(2), 177a–177g.

    Article  Google Scholar 

Download references

Acknowledgments

This study was a part of the Bioprolor project financed by Conseil Regional de Lorraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flore Biteau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biteau, F., Nisse, E., Hehn, A. et al. A Rapid and Efficient Method for Isolating High Quality DNA from Leaves of Carnivorous Plants from the Drosera Genus. Mol Biotechnol 51, 247–253 (2012). https://doi.org/10.1007/s12033-011-9462-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9462-y

Keywords

Navigation