Skip to main content
Log in

Genetic Differentiation of Colletotrichum gloeosporioides and C. truncatum Associated with Anthracnose Disease of Papaya (Carica papaya L.) and Bell Pepper (Capsium annuum L.) Based on ITS PCR-RFLP Fingerprinting

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Members of the genus Colletotrichum include some of the most economically important fungal pathogens in the world. Accurate diagnosis is critical to devising disease management strategies. Two species, Colletotrichum gloeosporioides and C. truncatum, are responsible for anthracnose disease in papaya (Carica papaya L.) and bell pepper (Capsicum annuum L.) in Trinidad. The ITS1–5.8S–ITS2 region of 48 Colletotrichum isolates was sequenced, and the ITS PCR products were analyzed by PCR-RFLP analysis. Restriction site polymorphisms generated from 11 restriction enzymes enabled the identification of specific enzymes that were successful in distinguishing between C. gloeosporioides and C. truncatum isolates. Species-specific restriction fragment length polymorphisms generated by the enzymes AluI, HaeIII, PvuII, RsaI, and Sau3A were used to consistently resolve C. gloeosporioides and C. truncatum isolates from papaya. AluI, ApaI, PvuII, RsaI, and SmaI reliably separated isolates of C. gloeosporioides and C. truncatum from bell pepper. PvuII, RsaI, and Sau3A were also capable of distinguishing among the C. gloeosporioides isolates from papaya based on the different restriction patterns that were obtained as a result of intra-specific variation in restriction enzyme recognition sites in the ITS1–5.8S–ITS2 rDNA region. Of all the isolates tested, C. gloeosporioides from papaya also had the highest number of PCR-RFLP haplotypes. Cluster analysis of sequence and PCR-RFLP data demonstrated that all C. gloeosporioides and C. truncatum isolates clustered separately into species-specific clades regardless of host species. Phylograms also revealed consistent topologies which suggested that the genetic distances for PCR-RFLP-generated data were comparable to that of ITS sequence data. ITS PCR-RFLP fingerprinting is a rapid and reliable method to identify and differentiate between Colletotrichum species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. FAOSTAT (2010). Food and agricultural organization of the United Nations. http://faostat.fao.org. Accessed 15 Jan 2011.

  2. Uchida, J. Y., Kadooka, C. Y., & Aragaki, M. (1996). Papaya seedling blight and damping-off caused by Colletotrichum gloeosporioides in Hawaii. Plant Disease, 80, 712.

    Article  Google Scholar 

  3. Pakdeevaraporn, P., Wasee, S., Taylor, P. W. J., & Mongkolporn, O. (2005). Inheritance of resistance to anthracnose caused by Colletotrichum capsici in Capsicum. Plant Breeding, 124, 206–208.

    Article  Google Scholar 

  4. Than, P. P., Jeewon, R., Hyde, K. D., Pongsupasamit, S., Mongkolporn, O., & Taylor, P. W. J. (2008). Characterization and pathogenicity of Colletotrichum species associated with anthracnose on Chili (Capsicum spp) in Thailand. Plant Pathology, 57, 562–572.

    Article  Google Scholar 

  5. Lewis-Ivey, M. L., Nava-Diaz, C., & Miller, S. A. (2004). Identification and management of Colletotrichum acutatum on immature bell peppers. Plant Disease, 88, 1198–1204.

    Article  Google Scholar 

  6. Harp, T. L., Pernezny, K., Lewis-Ivey, M. L., Miller, S. A., & Kuhn, P. J. (2008). The etiology of recent pepper anthracnose outbreaks in Florida. Crop Protection, 27, 1380–1384.

    Article  Google Scholar 

  7. Bailey, J. A., & Jeger, M. J. (1992). Colletotrichum: Biology pathology and control (p. 388). Commonwealth Mycological Institute: Wallingford.

    Google Scholar 

  8. Simmonds, J. H. (1965). A study of the species of Colletotrichum causing ripe fruit rots in Queensland. Queensland Journal of Agriculture and Animal Science, 22, 437–459.

    Google Scholar 

  9. Freeman, S., Katan, T., & Shabi, E. (1996). Characterization of Colletotrichum gloeosporioides isolates from avocado and almond fruits with molecular and pathogenicity tests. Applied and Environmental Microbiology, 62, 1014–1020.

    CAS  Google Scholar 

  10. Cannon, P. F., Buddie, A. G., & Bridge, P. D. (2008). The typification of Colletotrichum gloeosporioides. Mycotaxon, 104, 189–204.

    Google Scholar 

  11. Damm, U., Woudenberg, J. H. C., Cannon, P. F., & Crous, P. W. (2009). Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity, 39, 45–87.

    Google Scholar 

  12. Tapia-Tussell, R., Quijano-Ramayo, A., Cortes-Velaquez, A., Lappe, P., Larque-Saavedra, A., & Perez-Brito, D. (2008). PCR-based detection and characterization of the fungal pathogens Colletotrichum gloeosporioides and Colletotrichum capsici causing anthracnose in papaya (Carica papaya L.) in the Yucatan peninsula. Molecular Biotechnology, 40, 293–298.

    Article  CAS  Google Scholar 

  13. Tarnowski, T. B. L., & Ploetz, R. C. (2010). First report of Colletotrichum capsici causing postharvest anthracnose on papaya in South Florida. Plant Disease, 94, 1065.

    Article  Google Scholar 

  14. Yaguchi, Y., Nakanishi, Y., Saito, T., & Nakamura, S. (1995). Anthracnose of Carica papaya L. caused by Colletotrichum capsici. Annals of Phytopathological Society of Japan, 61, 222.

    Google Scholar 

  15. Sepiah, M. (1994). Efficacy of propiconazole against fungi causing postharvest disease on Eksotika papaya. International Conference, Chaing Mai (Thailand), 19th July, 1993. Australian Center for International Agricultural Research, Canberra, A.C.T. Australia.

  16. Farr, D. F., Rossman, A. Y., Pal, M. E., & McCray, E. B. (2007). Fungal databases, systemic botany and mycology laboratory, ARS, USDA. http://nt.ars-grin.gov. Accessed 15 Jan 2011.

  17. Mordue, J. E. M. (1991). IMI descriptions of fungi and bacteria. Mycopathologia, 116, 213–214.

    Article  Google Scholar 

  18. Sutton, B. C. (1992). The genus Glomerella and its anamorph Colletotrichum. In J. A. Bailey & J. J. Jeger (Eds.), Colletotrichum: Biology, pathology, control (pp. 1–26). Wallingford: CAB international.

    Google Scholar 

  19. Adaskaveg, J. E., & Hartin, R. J. (1997). Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Plant Pathology, 87, 979–987.

    CAS  Google Scholar 

  20. Cai, L., Hyde, K. D., Taylor, P. W. J., Weir, B. S., Waller, J., Abang, M. M., et al. (2009). A polyphasic approach for studying Colletotrichum. Fungal Diversity, 39, 183–204.

    Google Scholar 

  21. O’Donnell, K. (1992). Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycetes Fusarium sambucinum (Gibberella pulicaris). Current Genetics, 22, 213–220.

    Article  Google Scholar 

  22. Chillali, M., Ldder-Ighili, H., Guillaumin, J. J., Mohammed, C., Lung Escarmant, B., & Botton, B. (1998). Variation of the ITS region and IGS region of ribosomal DNA among the biological species of European Armillaria. Mycological Research, 102, 533–540.

    Article  CAS  Google Scholar 

  23. Hyde, K. D., Cai, L., McKenzie, E. H. C., Yang, Y. L., Zhang, J. Z., & Prihastuti, H. (2009). Colletotrichum: A catalogue of confusion. Fungal Diversity, 39, 1–17.

    Google Scholar 

  24. Kroken, S., Glass, N. L., Taylor, J. W., Yoder, O. C., & Turgeon, B. G. (2003). Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proceedings of the National Academy of Sciences United States of America, 100, 15670–15675.

    Article  CAS  Google Scholar 

  25. Pimentel, G., Carris, L. M., Levy, L., & Meyer, R. J. (1998). Genetic variability among isolates of Tilletia barclayana, T. indica and allied species based on RAPD and PCR-RFLP analysis. Mycologia, 90, 1017–1027.

    Article  Google Scholar 

  26. Kim, D. H., Martyn, R. D., & Magill, C. W. (1992). Restriction fragment length polymorphism groups and physical map of mitochondrial DNA from Fusarium oxysporum f. sp. niveum. Phytopathology, 82, 346–353.

    Article  CAS  Google Scholar 

  27. Levy, L., Castlebury, L. A., Carris, L. M., Meyer, R. J., & Pimentel, G. (2001). Internal transcribed spacer sequence-based phylogeny and polymerase chain reaction-restriction fragment length polymorphism differentiation of Tilletia walkeri and T. indica. Phytopathology, 91, 935–940.

    Article  CAS  Google Scholar 

  28. Edel, V., Steinberg, C., Avelange, I., Laguerre, G., & Alabouvette, C. (1996). Comparison of three molecular methods for the characterization of Fusarium oxysporum strains. Phytopathology, 85, 579–585.

    Article  Google Scholar 

  29. Young-Mi, L., Choi, Y.-K., & Min, B. -R. (2000). PCR-RFLP and sequence analysis of the rDNA ITS region in the Fusarium spp. The Journal of Microbiology, 38, 66–73.

    CAS  Google Scholar 

  30. Timonen, S., Smith, F. A., & Smith, S. E. (1997). Microtubules of the mycorrhizal fungus Glomus intraradices in symbiosis with tomato roots. Canadian Journal of Botany, 79, 307–313.

    Google Scholar 

  31. Krupa, P. (1999). Identification of ectomycorrhizal fungi isolated from roots of birch growing on metallurgic heap. Polish Journal of Ecology, 52, 353–357.

    Google Scholar 

  32. Balardin, R. S., Smith, J. J., & Kelly, J. D. (1999). Ribosomal DNA polymorphism in Colletotrichum lindemuthianum. Mycological Research, 103, 841–848.

    Article  CAS  Google Scholar 

  33. Abang, M. M., Winter, S., Green, K. R., Hoffmann, P., Mignouna, H. D., & Wolf, G. A. (2002). Molecular identification of Colletotrichum gloeosporioides causing yam anthracnose in Nigeria. Plant Pathology, 51, 63–71.

    Article  Google Scholar 

  34. Martin, M. P., & Garcia-Figueres, F. (1999). Colletotrichum acutatum and C. gloeosporioides cause anthracnose on olives. European Journal of Plant Pathology, 105, 733–741.

    Article  Google Scholar 

  35. MacKenzie, S. J., Seijo, T. E., Legard, D. E., Timmer, P. W., & Peres, N. A. (2007). Selection for pathogenicity to strawberry in populations of Colletotrichum gloeosporioides from native plants. Phytopathology, 97, 1130–1140.

    Article  CAS  Google Scholar 

  36. Martínez-Culebras, P. V. (2003). Phylogenetic relationships among Colletotrichum pathogens of strawberry and design of PCR primers for their identification. Journal of Phytopathology, 151, 135–143.

    Article  Google Scholar 

  37. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). PCR protocols: A guide to methods and applications. New York: Academic Press Inc.

    Google Scholar 

  38. Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.

    CAS  Google Scholar 

  39. Vincze, T., Posfai, J., & Roberts, R. J. (2003). NEBcutter: A program to cleave DNA with restriction enzymes. Nucleic Acids Research, 31, 3688–3691.

    Article  CAS  Google Scholar 

  40. Peakall, R., & Smouse, P. E. (2006). Genalex 6: Genetic analysis in Excel-Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295.

    Article  Google Scholar 

  41. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetic analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  42. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  43. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  44. Martínez-Culebras, P. V., Barrio, E., García, M. D., & Querol, A. (2000). Identification of Colletotrichum species responsible for anthracnose of strawberry based on the internal transcribed spacers of the ribosomal region. FEMS Microbiology Letters, 189, 97–101.

    Article  Google Scholar 

  45. Vila-Nova, M. X., Borges, L. R., de Sousa, A. C. B., Brasileiro, B. T. R. V., Lima, E. A. L. A., da Costa, A. F., et al. (2011). Pathogenicity for onion and genetic diversity of isolates of the pathogenic fungus Colletotrichum gloeosporioides (Phyllachoraceae) from the State of Pernambuco, Brazil. Genetics and Molecular Research, 10, 311–320.

    Article  CAS  Google Scholar 

  46. Sreenivasaprasad, S., Mills, P. R., Meechan, B. M., & Brown, A. E. (1996). Phylogeny and systematics of 18 Colletotrichum species based on ribosomal DNA spacer sequences. Genome, 39, 499–512.

    Article  CAS  Google Scholar 

  47. Johnston, P. R. (1997). Relationships among Colletotrichum isolates from fruit rots assessed using rDNA sequences. Mycologia, 89, 420–430.

    Article  CAS  Google Scholar 

  48. Prusky, D. (2000). Colletotrichum host specificity, pathology and host-pathogen interaction. St. Paul, MN: The American Phytopathological Society.

    Google Scholar 

  49. Nirenberg, H., Feiler, U., & Hagedorn, G. (2002). Description of Colletotrichum lupini comb. Mycologia, 94, 307–320.

    Article  Google Scholar 

  50. Guerber, J. C., Liu, B., Johnston, P., & Correll, J. C. (2003). Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis by two introns, mtDNA and intron RFLP’s, and mating compatibility. Mycologia, 95, 872–895.

    Article  CAS  Google Scholar 

  51. Roth, A., Fisher, M., Hamid, M. E., Michalke, S., Lunwig, L., & Mauch, H. (1998). Differentiation of phylogenetically related slowly growing mycobacteria based on 16S–23S rRNA gene internal transcribed spacer sequences. Journal of Clinical Microbiology, 36, 139–147.

    CAS  Google Scholar 

  52. TeBeest, D. O., Shilling, C. W., Hopkins-Riley, L., & Weidemann, G. J. (1989). The number of nuclei in spores of three species of Colletotrichum. Mycologia, 81, 147–149.

    Article  Google Scholar 

  53. Munaut, F., Hamaide, N., Vander Stappen, J., & Maraite, H. (1998). Genetic relationships among isolates of Colletotrichum gloeosporioides from Stylosanthes spp. in Africa and Australia using RAPD and ribosomal DNA markers. Plant Pathology, 47, 641–648.

    Article  CAS  Google Scholar 

  54. Hijri, M., Hosny, M., van Tuinen, D., & Dulieu, H. (1999). Intraspecific ITS polymorphism in Scutellospora castanea (Glomales, Zygomycota) is structured within multinucleate spores. Fungal Genetics and Biology, 26, 141–151.

    Article  CAS  Google Scholar 

  55. Okabe, I., & Matsumoto, N. (2003). Phylogenetic relationship of Sclerotium rolfsii (teleomorph Athelia rolfsii) and S. delphinii based on ITS sequences. Mycological Research, 107, 164–168.

    Article  CAS  Google Scholar 

  56. Pannecoucque, J., & Hofte, M. (2009). Detection of rDNA ITS polymorphism in Rhizoctonia solani AG 2–1 isolates. Mycologia, 101, 26–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sephra N. Rampersad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maharaj, A., Rampersad, S.N. Genetic Differentiation of Colletotrichum gloeosporioides and C. truncatum Associated with Anthracnose Disease of Papaya (Carica papaya L.) and Bell Pepper (Capsium annuum L.) Based on ITS PCR-RFLP Fingerprinting. Mol Biotechnol 50, 237–249 (2012). https://doi.org/10.1007/s12033-011-9434-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9434-2

Keywords

Navigation