Skip to main content

Advertisement

Log in

Selection of Reference Genes for qRT-PCR in High Fat Diet-Induced Hepatic Steatosis Mice Model

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

With the epidemic proportions of obesity worldwide and the concurrent prevalence of hepatic steatosis, there is an urgent need for better understanding the intrinsic mechanism of hepatic steatosis, especially the changes of gene expression underlying the development of hepatic steatosis and its associated abnormal liver function. Quantitative real-time PCR (qRT-PCR) is a sensitive and highly reproducible technique of gene expression analysis. However, for accurate and reliable gene expression results, it is vital to have an internal control gene expressed at constant levels under all the experimental conditions being analyzed for. In this study, the authors validated candidate reference genes suitable for qRT-PCR profiling experiments using livers from control mice and high fat diet-induced obese mice. Cross-validation of expression stability of ten selected reference genes using three popular algorithms, GeNorm, NormFinder, and BestKeeper found HPRT1 and GAPDH as most stable reference genes. Thus, HPRT1 and GAPDH are recommended as stable reference genes most suitable for gene expression studies in the development of hepatic steatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, L. A., & Lindor, K. D. (2007). Nonalcoholic fatty liver disease. Annals of Epidemiology, 17, 863–869.

    Article  Google Scholar 

  2. Leclercq, L. A., Da Silva Morais, A., Schroyen, B., et al. (2007). Insulin resistance in hepatocytes and sinusoidal liver cells: Mechanisms and consequences. Journal of Hepatology, 47, 142–145.

    Article  CAS  Google Scholar 

  3. Guo, F., & Cavener, D. R. (2007). The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metabolism, 5, 103–114.

    Article  CAS  Google Scholar 

  4. Brookes, M. J., & Cooper, B. T. (2007). Hypertension and fatty liver: Guilty by association? Journal of Human Hypertension, 21, 264–270.

    CAS  Google Scholar 

  5. Saadeh, S. (2007). Nonalcoholic fatty liver disease and obesity. Nutrition in Clinical Practice, 22, 1–10.

    Article  Google Scholar 

  6. Byrne, C. D. (2009). Hypoxia and non-alcoholic fatty liver disease. Clinical Science (London), 118, 397–400.

    Article  Google Scholar 

  7. De Alwis, N. M., & Day, C. P. (2008). Non-alcoholic fatty liver disease: The mist gradually clears. Journal of Hepatology, 48, S104–S112.

    Google Scholar 

  8. Farrell, G. C., & Larter, C. Z. (2006). Nonalcoholic fatty liver disease: From steatosis to cirrhosis. Hepatology, 43, 99–112.

    Article  Google Scholar 

  9. Younossi, Z. M., Diehl, A. M., & Ong, J. P. (2002). Nonalcoholic fatty liver disease: An agenda for clinical research. Hepatology, 35, 746–752.

    Article  Google Scholar 

  10. Hanley, A. J., Williams, K., Festa, A., et al. (2005). Liver markers and development of the metabolic syndrome. Diabetes, 54, 3140–3147.

    Article  CAS  Google Scholar 

  11. De Jonge, H. J., Fehrmann, R. S., De Bont, E. S., et al. (2007). Evidence based selection of housekeeping genes. PloS ONE, 2, e898.

    Article  Google Scholar 

  12. Cikos, S., & Koppel, J. (2009). Transformation of real-time PCR fluorescence data to target gene quantity. Analytical Biochemistry, 384, 1–10.

    Article  CAS  Google Scholar 

  13. Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. Journal of Molecular Endocrinology, 29, 23–39.

    Article  CAS  Google Scholar 

  14. Huggett, J., Dheda, K., Bustin, S., et al. (2005). Strategies and considerations. Genes and Immunity, 6, 279–284.

    Article  CAS  Google Scholar 

  15. Vandesompele, J., De Preter, K., Pattyn, F., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 0034.1–0034.11.

    Article  Google Scholar 

  16. Radonić, A., Thulke, S., Mackay, I. M., et al. (2004). Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications, 313, 856–862.

    Article  Google Scholar 

  17. Andersen, C. L., Jensen, J. L., & Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250.

    Article  CAS  Google Scholar 

  18. Pfaffl, M. W., Tichopad, A., Prgomet, C., et al. (2004). Determination of stable housekeeping genes, differentially regulated target genes, and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnology Letters, 26, 509–515.

    Article  CAS  Google Scholar 

  19. Yang, L., Zhang, Y., Wang, L., et al. (2010). Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. Journal of Hepatology, 53, 339–347.

    Article  CAS  Google Scholar 

  20. Mehta, R., Birerdinc, A., Hossain, N., et al. (2010). Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples. BMC Molecular Biology, 11, 39–49.

    Article  Google Scholar 

  21. Shoelson, S. E., Lee, J., & Goldfine, A. B. (2006). Inflammation and insulin resistance. Journal of Clinical Investigation, 116, 1793–1801.

    Article  CAS  Google Scholar 

  22. Carter-Kent, C., Zein, N. N., & Feldstein, A. E. (2008). Cytokines in the pathogenesis of fatty liver and disease progression to steatohepatitis: Implications for treatment. American Journal of Gastroenterology, 103, 1036–1042.

    Article  CAS  Google Scholar 

  23. Gantner, F., Leist, M., Lohse, A. W., et al. (1995). Concanavalin A-induced T-cell-mediated hepatic injury in mice. The role of tumor necrosis factor. Hepatology, 21, 190–198.

    CAS  Google Scholar 

  24. Fausto, N. (2006). Involvement of the innate immune system in liver regeneration and injury. Journal of Hepatology, 45, 347–349.

    Article  CAS  Google Scholar 

  25. Feng, D., Wang, Y., Mei, Y., et al. (2009). Stearoyl-CoA desaturase 1 deficiency protects mice from immune-mediated liver injury. Laboratory Investigation, 89, 222–230.

    Article  CAS  Google Scholar 

  26. Shi, G., Zhang, Z., Feng, D., et al. (2010). Selection of reference genes for quantitative real-time reverse transcription-polymerase chain reaction in concanavalin A-induced hepatitis model. Analytical Biochemistry, 401, 81–90.

    Article  CAS  Google Scholar 

  27. Halder, R. C., Aguilera, C., Maricic, I., et al. (2007). Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. Journal of Clinical Investigation, 117, 2302–2312.

    Article  CAS  Google Scholar 

  28. Beldi, G., Wu, Y., Banz, Y., et al. (2008). Natural killer T cell dysfunction in CD39-null mice protects against concanavalin A-induced hepatitis. Hepatology, 48, 841–852.

    Article  CAS  Google Scholar 

  29. Nakashima, H., Kinoshita, M., Nakashima, M., et al. (2008). Superoxide produced by Kupffer cells is an essential effector in concanavalin A-induced hepatitis in mice. Hepatology, 48, 1979–1988.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from 973 Project (no. 2006CB503904), 863 Project (no. 2006 AA 02A409), the National Natural Science Foundation of China (no. 30725037, 30971077, and 30971385), and Shanghai Committee for Science and Technology (no. 07JC14042). The authors thank Jiulan Cui of Shanghai Jiao-Tong University School of Medicine for maintaining the mouse colony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Wang.

Additional information

Lingyan Xu and Xinran Ma contributed equally to this study.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

12033_2010_9366_MOESM1_ESM.jpg

Supplementary Fig. 1. Verification of amplified products and sequencing reactions. (A) PCR products were checked on 1.5% agarose gel and shown to have the expected size. (B) Representative images of sequences of amplification products by direct sequencing with our designed primers. (JPEG 791 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Ma, X., Cui, B. et al. Selection of Reference Genes for qRT-PCR in High Fat Diet-Induced Hepatic Steatosis Mice Model. Mol Biotechnol 48, 255–262 (2011). https://doi.org/10.1007/s12033-010-9366-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9366-2

Keywords

Navigation