Skip to main content

Advertisement

Log in

Expression of a Cholera Toxin B Subunit-Neutralizing Epitope of the Porcine Epidemic Diarrhea Virus Fusion Gene in Transgenic Lettuce (Lactuca sativa L.)

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Transgenic plants have been used as a safe and economic expression system for the production of edible vaccines. A synthetic cholera toxin B subunit gene (CTB) was fused with a synthetic neutralizing epitope gene of the porcine epidemic diarrhea virus (sCTB–sCOE), and the sCTB–sCOE fusion gene was introduced into a plant expression vector under the control of the ubiquitin promoter. This plant expression vector was transformed into lettuce (Lactuca sativa L.) using the Agrobacterium-mediated transformation method. Stable integration and transcriptional expression of the sCTB–sCOE fusion gene was confirmed using genomic DNA PCR analysis and northern blot analysis, respectively. The results of western blot analysis with anti-cholera toxin and anti-COE antibody showed the synthesis and assembly of CTB–COE fusion protein into oligomeric structures with pentameric sizing. The biological activity of CTB–COE fusion protein to its receptor, GM1-ganglioside, in transgenic plants was confirmed via GM1-ELISA with anti-cholera toxin and anti-COE antibody. Based on GM1-ELISA, the expression level of CTB–COE fusion proteins reached 0.0065% of the total soluble protein in transgenic lettuce leaf tissues. Transgenic lettuce successfully expressing CTB–COE fusion protein will be tested to induce efficient immune responses against porcine epidemic diarrhea virus infection by administration with raw material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cavanagh, D. (2005). Coronaviridae: A review of coronaviruses and toroviruses (pp. 1–54). Basel: Birkhäuser Verlag.

    Google Scholar 

  2. Cavanagh, D., Brian, D. A., Brinton, M. A., Enjuanes, L., Holmes, K. V., Horzinek, M. C., et al. (1993). The Coronaviridae now comprises two genera, coronavirus and torovirus: Report of the Coronaviridae Study Group. Advances in Experimental Medicine and Biology, 342, 255–257.

    CAS  Google Scholar 

  3. Pensaert, M. B., & de Bouck, P. (1978). A new coronavirus-like particle associated with diarrhea in swine. Archives of Virology, 58, 243–247.

    Article  CAS  Google Scholar 

  4. Chasey, D., & Cartwright, S. F. (1978). Virus-like particles associated with porcine epidemic diarrhoea. Research in Veterinary Science, 25, 255–256.

    CAS  Google Scholar 

  5. Turgeon, D. C., Morin, M., Jolette, J., Higgins, R., Marsolais, G., & DiFranco, E. (1980). Coronavirus-like particles associated with diarrhea in baby pigs in Quebec. Canadian Veterinary Journal, 21, 100–101.

    CAS  Google Scholar 

  6. Horvath, I., & Mocsari, E. (1981). Ultrastructural changes in the small intestinal epithelium of suckling pigs affected with a transmissible gastroenteritis (TGE)-like disease. Archives of Virology, 68, 103–113.

    Article  CAS  Google Scholar 

  7. Pospischil, A., Hess, R. G., & Bachmann, P. A. (1981). Light microscopy and ultrahistology of intestinal changes in pigs infected with epizootic diarrhoea virus (EVD): Comparison with transmissible gastroenteritis (TGE) virus and porcine rotavirus infections. Zentralbl Veterinarmed B, 28, 564–577.

    Article  CAS  Google Scholar 

  8. Takahashi, K., Okada, K., & Ohshima, K. (1983). An outbreak of swine diarrhea of a new-type associated with coronavirus-like particles in Japan. Nippon Juigaku Zasshi, 45, 829–832.

    CAS  Google Scholar 

  9. Qinghua, C. (1992). Investigation on epidemic diarrhea in pigs in Qinghai region. Qinghai Xuma Shaoyi Zazhi, 22, 22–23.

    Google Scholar 

  10. Chae, C., Kim, O., Choi, C., Cho, W. S., Kim, J., & Tai, J. H. (2000). Prevalence of porcine epidemic diarrhoea virus and transmissible gastroenteritis virus infection in Korean pigs. The Veterinary Record, 147, 606–608.

    Article  CAS  Google Scholar 

  11. Puranaveja, S., Poolperm, P., Lertwatcharasakul, P., Kesdaengsakonwut, S., Boonsoongnern, A., Urairong, K., et al. (2009). Chinese-like strain of porcine epidemic diarrhea virus, Thailand. Emerging Infectious Diseases, 15, 1112–1115.

    Article  Google Scholar 

  12. Duarte, M., & Laude, H. (1994). Sequence of the spike protein of the porcine epidemic diarrhoea virus. Journal of General Virology, 75(Pt 5), 1195–1200.

    Article  CAS  Google Scholar 

  13. Kocherhans, R., Bridgen, A., Ackermann, M., & Tobler, K. (2001). Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes, 23, 137–144.

    Article  CAS  Google Scholar 

  14. Egberink, H. F., Ederveen, J., Callebaut, P., & Horzinek, M. C. (1988). Characterization of the structural proteins of porcine epizootic diarrhea virus, strain CV777. American Journal of Veterinary Research, 49, 1320–1324.

    CAS  Google Scholar 

  15. Yeo, S. G., Hernandez, M., Krell, P. J., & Nagy, E. E. (2003). Cloning and sequence analysis of the spike gene of porcine epidemic diarrhea virus Chinju99. Virus Genes, 26, 239–246.

    Article  CAS  Google Scholar 

  16. Chang, S. H., Bae, J. L., Kang, T. J., Kim, J., Chung, G. H., Lim, C. W., et al. (2002). Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Molecules and Cells, 14, 295–299.

    CAS  Google Scholar 

  17. Daniell, H., Streatfield, S. J., & Wycoff, K. (2001). Medical molecular farming: Production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends in Plant Science, 6, 219–226.

    Article  CAS  Google Scholar 

  18. Hellwig, S., Drossard, J., Twyman, R. M., & Fischer, R. (2004). Plant cell cultures for the production of recombinant proteins. Nature Biotechnology, 22, 1415–1422.

    Article  CAS  Google Scholar 

  19. Rigano, M. M., & Walmsley, A. M. (2005). Expression systems and developments in plant-made vaccines. Immunology and Cell Biology, 83, 271–277.

    Article  CAS  Google Scholar 

  20. Walmsley, A. M., & Arntzen, C. J. (2000). Plants for delivery of edible vaccines. Current Opinion in Biotechnology, 11, 126–129.

    Article  CAS  Google Scholar 

  21. Doran, P. M. (2006). Foreign protein degradation and instability in plants and plant tissue cultures. Trends in Biotechnology, 24, 426–432.

    Article  CAS  Google Scholar 

  22. Holmgren, J., Harandi, A. M., & Czerkinsky, C. (2003). Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Expert Review of Vaccines, 2, 205–217.

    Article  CAS  Google Scholar 

  23. Sixma, T. K., Pronk, S. E., Kalk, K. H., Wartna, E. S., van Zanten, B. A., Witholt, B., et al. (1991). Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature, 351, 371–377.

    Article  CAS  Google Scholar 

  24. Merritt, E. A., Sarfaty, S., van den Akker, F., L’Hoir, C., Martial, J. A., & Hol, W. G. (1994). Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Science, 3, 166–175.

    Article  CAS  Google Scholar 

  25. Zhang, R. G., Scott, D. L., Westbrook, M. L., Nance, S., Spangler, B. D., Shipley, G. G., et al. (1995). The three-dimensional crystal structure of cholera toxin. Journal of Molecular Biology, 251, 563–573.

    Article  CAS  Google Scholar 

  26. Fujinaga, Y. (2006). Transport of bacterial toxins into target cells: Pathways followed by cholera toxin and botulinum progenitor toxin. Journal of Biochemistry, 140, 155–160.

    Article  CAS  Google Scholar 

  27. Rask, C., Fredriksson, M., Lindblad, M., Czerkinsky, C., & Holmgren, J. (2000). Mucosal and systemic antibody responses after peroral or intranasal immunization: Effects of conjugation to enterotoxin B subunits and/or of co-administration with free toxin as adjuvant. APMIS, 108, 178–186.

    Article  CAS  Google Scholar 

  28. Sanchez, J., Johansson, S., Lowenadler, B., Svennerholm, A. M., & Holmgren, J. (1990). Recombinant cholera toxin B subunit and gene fusion proteins for oral vaccination. Research in Microbiology, 141, 971–979.

    Article  CAS  Google Scholar 

  29. Yuki, Y., & Kiyono, H. (2003). New generation of mucosal adjuvants for the induction of protective immunity. Reviews in Medical Virology, 13, 293–310.

    Article  CAS  Google Scholar 

  30. McKenzie, S., & Halseu, J. (1984). Cholera toxin B subunit as a carrier protein to stimulate a mucosal immune response. Journal of Immunology, 133, 1818–1824.

    CAS  Google Scholar 

  31. Arakawa, T., Yu, J., Chong, D. K., Hough, J., Engen, P. C., & Langridge, W. H. (1998). A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nature Biotechnology, 16, 934–938.

    Article  CAS  Google Scholar 

  32. Befus, N., & Langridge, W. H. R. (2000). Plant-based cholera toxin B subunit-insulin/GAD fusion proteins suppress the development of autoimmune diabetes. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 43, 116–120.

    Article  Google Scholar 

  33. Kim, T. G., & Langridge, W. H. (2003). Assembly of cholera toxin B subunit full-length rotavirus NSP4 fusion protein oligomers in transgenic potato. Plant Cell Reports, 21, 884–890.

    CAS  Google Scholar 

  34. Li, D., O’Leary, J., Huang, Y., Huner, N. P., Jevikar, A. M., & Ma, S. (2006). Expression of cholera toxin B subunit and the B chain of human insulin as a fusion protein in transgenic tobacco plants. Plant Cell Reports, 25, 417–424.

    Article  Google Scholar 

  35. Nozoye, T., Takaiwa, F., Tsuji, N., Yamakawa, T., Arakawa, T., Hayashi, Y., et al. (2009). Production of Ascaris suum As14 protein and its fusion protein with cholera toxin B subunit in rice seeds. Journal of Veterinary Medical Science, 71, 995–1000.

    Article  CAS  Google Scholar 

  36. Bae, J. L., Lee, J. G., Kang, T. J., Jang, Y. S., & Yang, M. S. (2003). Induction of antigen-specific systemic and mucosal immune responses by feeding animals transgenic plants expressing the antigen. Vaccine, 21, 4052–4058.

    Article  CAS  Google Scholar 

  37. Kang, T. J., Kang, K. H., Kim, J. A., Kwon, T. H., Jang, Y. S., & Yang, M. S. (2004). High-level expression of the neutralizing epitope of porcine epidemic diarrhea virus by a tobacco mosaic virus-based vector. Protein Expression and Purification, 38, 129–135.

    Article  CAS  Google Scholar 

  38. Kang, T. J., Kim, Y. S., Jang, Y. S., & Yang, M. S. (2005). Expression of the synthetic neutralizing epitope gene of porcine epidemic diarrhea virus in tobacco plants without nicotine. Vaccine, 23, 2294–2297.

    Article  CAS  Google Scholar 

  39. Kang, T. J., Han, S. C., Yang, M. S., & Jang, Y. S. (2006). Expression of synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat-labile enterotoxin in tobacco plants. Protein Expression and Purification, 46, 16–22.

    Article  CAS  Google Scholar 

  40. Oszvald, M., Kang, T. J., Tomoskozi, S., Tamas, L., Kim, T. G., & Yang, M. S. (2007). Expression of a synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat labile enterotoxin in rice endosperm. Molecular Biotechnology, 35, 215–223.

    Article  CAS  Google Scholar 

  41. Huy, N. X., Kim, Y. S., Jun, S. C., Jin, Z., Park, S. M., Yang, M. S., et al. (2009). Production of a heat-labile enterotoxin B subunit-porcine epidemic diarrhea virus-neutralizing epitope fusion protein in transgenic lettuce (Lactuca sativa). Biotechnology and Bioprocess Engineering, 14, 731–737.

    Article  CAS  Google Scholar 

  42. Lelivelt, C. L., McCabe, M. S., Newell, C. A., Desnoo, C. B., van Dun, K. M., Birch-Machin, I., et al. (2005). Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Molecular Biology, 58, 763–774.

    Article  CAS  Google Scholar 

  43. Kang, T. J., Loc, N. H., Jang, M. O., & Yang, M. S. (2004). Modification of the cholera toxin B subunit coding sequence to enhance expression in plants. Molecular Breeding, 13, 143–153.

    Article  CAS  Google Scholar 

  44. Kozak, M. (1989). The scanning model for translation: An update. Journal of Cell Biology, 108, 229–241.

    Article  CAS  Google Scholar 

  45. Van Haute, E., Joos, H., Maes, M., Warren, G., Van Montagu, M., & Schell, J. (1983). Integeneric transfer and exchange recombination of restriction fragments cloned in pBR322: A novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. EMBO Journal, 2, 411–417.

    Google Scholar 

  46. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  47. Lehrach, H., Diamound, D., Wozney, J. M., & Boedtker, H. (1977). RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry, 16, 4743–4751.

    Article  CAS  Google Scholar 

  48. Arakawa, T., Chong, D. K., Merritt, J. L., & Langridge, W. H. (1997). Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Research, 6, 403–413.

    Article  CAS  Google Scholar 

  49. Kang, T. J., Kwon, T. H., Kim, T. G., Loc, N. H., & Yang, M. S. (2003). Comparing constitutive promoters using CAT activity in transgenic tobacco plants. Molecules and Cells, 16, 117–122.

    CAS  Google Scholar 

  50. Peach, C., & Velten, J. (1991). Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Molecular Biology, 17, 49–60.

    Article  CAS  Google Scholar 

  51. Baulocombe, D. (2004). RNA silencing in plants. Nature, 431, 356–363.

    Article  Google Scholar 

  52. Hondred, D., Walker, J. M., Mathews, D. E., & Vierstra, D. (1999). Use of ubiquitin fusions to augment protein expression in transgenic plants. Plant Physiology, 119, 713–723.

    Article  CAS  Google Scholar 

  53. Kang, T. J., Kim, B. G., Yang, J. Y., & Yang, M. S. (2006). Expression of a synthetic cholera toxin B subunit in tobacco using ubiquitin promoter and bar gene as a selectable marker. Molecular Biotechnology, 32, 93–100.

    Article  CAS  Google Scholar 

  54. Daniell, H., Lee, S. B., Panchal, T., & Wiebe, P. O. (2001). Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco. Journal of Molecular Biology, 311, 1001–1009.

    Article  CAS  Google Scholar 

  55. Kim, Y. S., Kim, B. G., Kim, T. G., Kang, T. J., & Yang, M. S. (2006). Expression of a cholera toxin B subunit in transgenic lettuce (Lactuca sativa L.) using Agrobacterium-mediated transformation system. Plant Cell, Tissue and Organ Culture, 87, 203–210.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Technology Development program for Agriculture and Forestry, Ministry for Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Geum Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huy, NX., Yang, MS. & Kim, TG. Expression of a Cholera Toxin B Subunit-Neutralizing Epitope of the Porcine Epidemic Diarrhea Virus Fusion Gene in Transgenic Lettuce (Lactuca sativa L.). Mol Biotechnol 48, 201–209 (2011). https://doi.org/10.1007/s12033-010-9359-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9359-1

Keywords

Navigation