Skip to main content
Log in

Characterization and Engineering of a Novel Pyrroloquinoline Quinone Dependent Glucose Dehydrogenase from Sorangium cellulosum So ce56

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A novel pyrroloquinoline quinone dependent glucose dehydrogenase like enzyme (PQQ GDH) was isolated from Sorangium cellulosum So ce56. The putative coding region was cloned, over expressed in E. coli and the resulting enzyme was characterized. The recombinant protein has a relative molecular mass of 63 kDa and shows 43% homology to PQQ GDH-B from Acinetobacter calcoaceticus. In the presence of PQQ and CaCl2 the enzyme has dehydrogenase activity with the substrate glucose as well as with other mono- and disaccharides. The thermal stability and its pH activity profile mark the enzyme as a potential glucose biosensor enzyme. In order to decrease the activity on maltose, which is unwanted for a potential application in biosensors, the protein was rationally modified at three specified positions. The best variant showed a 59% reduction in activity on maltose compared to the wild type enzyme. The catalytic efficiency (k cat/K M) was reduced fivefold but the specific activity still amounted to 63% of the wild type activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D’Costa, E. J., Higgins, I. J., & Turner, A. P. (1986). Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosensors, 2, 71–87.

    Article  Google Scholar 

  2. Ling, Y., Haemmerle, M., Olsthoorn, A. J. J., Schuhmann, W., Schmidt, H.-L., Duine, J. A., et al. (1993). High current density “wired” quinoprotein glucose dehydrogenase electrode. Analytical Chemistry, 65, 238–241.

    Article  Google Scholar 

  3. Laurinavicius, V., Razumiene, J., Ramanavicius, A., & Ryabov, A. D. (2004). Wiring of PQQ-dehydrogenases. Biosensors and Bioelectronics, 20, 1217–1222.

    Article  CAS  Google Scholar 

  4. Tsujimura, S., Kojima, S., Kano, K., Ikeda, T., Sato, M., Sanada, H., et al. (2006). Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor. Bioscience, Biotechnology, and Biochemistry, 70, 654–659.

    Article  CAS  Google Scholar 

  5. Turner, A. P. F., & Wilson, R. (1992). Glucose oxidase: An ideal enzyme. Biosensors and Bioelectronics, 7, 165–185.

    Article  Google Scholar 

  6. Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase—an overview. Biotechnology Advances, 27, 489–501.

    Article  CAS  Google Scholar 

  7. Dokter, P., Frank, J., & Duine, J. A. (1986). Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus L.M.D. 79.41. Biochemical Journal, 239, 163–167.

    CAS  Google Scholar 

  8. Igarashi, S., Ohtera, T., Yoshida, H., Witarto, A. B., & Sode, K. (1999). Construction and characterization of mutant water-soluble PQQ glucose dehydrogenases with altered K(m) values—site-directed mutagenesis studies on the putative active site. Biochemical and Biophysical Research Communications, 264, 820–824.

    Article  CAS  Google Scholar 

  9. Igarashi, S., Hirokawa, T., & Sode, K. (2004). Engineering PQQ glucose dehydrogenase with improved substrate specificity. Site-directed mutagenesis studies on the active center of PQQ glucose dehydrogenase. Biomolecular Engineering, 21, 81–89.

    Article  CAS  Google Scholar 

  10. Hamamatsu, N., Suzumura, A., Nomiya, Y., Sato, M., Aita, T., Nakajima, M., et al. (2006). Modified substrate specificity of pyrroloquinoline quinone glucose dehydrogenase by biased mutation assembling with optimized amino acid substitution. Applied Microbiology and Biotechnology, 73, 607–617.

    Article  CAS  Google Scholar 

  11. Sode, K., Ootera, T., Shirahane, M., Witarto, A. B., Igarashi, S., & Yoshida, H. (2000). Increasing the thermal stability of the water-soluble pyrroloquinoline quinone glucose dehydrogenase by single amino acid replacement. Enzyme and Microbial Technology, 26, 491–496.

    Article  CAS  Google Scholar 

  12. Tanaka, S., Igarashi, S., Ferri, S., & Sode, K. (2005). Increasing stability of water-soluble PQQ glucose dehydrogenase by increasing hydrophobic interaction at dimeric interface. BMC Biochemistry, 6, 1.

    Article  Google Scholar 

  13. Schneiker, S., Perlova, O., Kaiser, O., Gerth, K., Alici, A., Altmeyer, M. O., et al. (2007). Complete genome sequence of the myxobacterium Sorangium cellulosum. Nature Biotechnology, 25, 1281–1289.

    Article  CAS  Google Scholar 

  14. Cleton-Jansen, A. M., Goosen, N., Vink, K., & van de Putte, P. (1989). Cloning, characterization and DNA sequencing of the gene encoding the Mr 50, 000 quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus. Molecular and General Genetics, 217, 430–436.

    Article  CAS  Google Scholar 

  15. Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences USA, 97, 6640–6645.

    Article  CAS  Google Scholar 

  16. Cozier, G. E., Salleh, R. A., & Anthony, C. (1999). Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine. Biochemical Journal, 340, 639–647.

    Article  CAS  Google Scholar 

  17. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  18. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.

    Article  CAS  Google Scholar 

  19. Oubrie, A., Rozeboom, H. J., Kalk, K. H., Olsthoorn, A. J., Duine, J. A., & Dijkstra, B. W. (1999). Structure and mechanism of soluble quinoprotein glucose dehydrogenase. EMBO Journal, 18, 5187–5194.

    Article  CAS  Google Scholar 

  20. Bendtsen, J. D., Nielsen, H., von Heijne, G., & Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 340, 783–795.

    Article  Google Scholar 

  21. Juncker, A. S., Willenbrock, H., von Heijne, G., Brunak, S., Nielsen, H., & Krogh, A. (2003). Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Science, 12, 1652–1662.

    Article  CAS  Google Scholar 

  22. Hommes, R. W. J., Postma, P. W., Neijssel, O. M., Tempest, D. W., Dokter, P., & Duine, J. A. (1984). Evidence of a quinoprotein glucose-dehydrogenase apoenzyme in several strains of Escherichia-Coli. FEMS Microbiology Letters, 24, 329–333.

    Article  CAS  Google Scholar 

  23. Olsthoorn, A. J., & Duine, J. A. (1996). Production, characterization, and reconstitution of recombinant quinoprotein glucose dehydrogenase (soluble type; EC 1.1.99.17) apoenzyme of Acinetobacter calcoaceticus. Archives of Biochemistry and Biophysics, 336, 42–48.

    Article  CAS  Google Scholar 

  24. Cleton-Jansen, A. M., Goosen, N., Vink, K., & van de Putte, P. (1989). Cloning of the genes encoding the two different glucose dehydrogenases from Acinetobacter calcoaceticus. Antonie Van Leeuwenhoek, 56, 73–79.

    Article  CAS  Google Scholar 

  25. James, P. L., & Anthony, C. (2003). The metal ion in the active site of the membrane glucose dehydrogenase of Escherichia coli. Biochimica et Biophysica Acta, 1647, 200–205.

    CAS  Google Scholar 

  26. Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108, 814–825.

    Article  CAS  Google Scholar 

  27. Davies, D. S. (1994). Kinetics of icodextrin. Peritoneal Dialysis International, 14, 45–50.

    Google Scholar 

  28. Sode, K., Igarashi, S., Morimoto, A., & Yoshida, H. (2002). Construction of engineered water-soluble PQQ glucose dehydrogenase with improved substrate specificity. Biocatalysis and Biotransformation, 20, 405–412.

    Article  CAS  Google Scholar 

  29. Patrick, W. M., Firth, A. E., & Blackburn, J. M. (2003). User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries. Protein Engineering Design & Selection, 16, 451–457.

    Article  CAS  Google Scholar 

  30. Igarashi, S., Okuda, J., Ikebukuro, K., & Sode, K. (2004). Molecular engineering of PQQGDH and its applications. Archives of Biochemistry and Biophysics, 428, 52–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the BMBF Innovationsinitiative Neue Länder (Unternehmen Region, InnoProfile). We would like to thank Bernd Gründig of Senslab GmbH for the helpful discussions, Christian Seidl for his help with the computer model, and Rolf Müller for his kind gift of S.cellulosum So ce56 genomic DNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meike Ballschmiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofer, M., Bönsch, K., Greiner-Stöffele, T. et al. Characterization and Engineering of a Novel Pyrroloquinoline Quinone Dependent Glucose Dehydrogenase from Sorangium cellulosum So ce56. Mol Biotechnol 47, 253–261 (2011). https://doi.org/10.1007/s12033-010-9339-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9339-5

Keywords

Navigation