Skip to main content

Advertisement

Log in

Simultaneous Targeting of Requiem & Alg-2 in Chinese Hamster Ovary Cells for Improved Recombinant Protein Production

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Apoptosis is known to be the main cause of cell death in the bioreactor environment, leading to the loss of recombinant protein productivity. In a previous study, transcriptional profiling was used to identify and target four early apoptosis-signaling genes: FADD, FAIM, Alg-2, and Requiem. The resulting cell lines had increased viable cell numbers and extended culture viability, which translated to increased protein productivity. Combinatorial targeting of two genes simultaneously has previously been shown to be more effective than targeting one gene alone. In this study, we sought to determine if targeting Requiem and Alg-2 was more effective than targeting Requiem alone. We found that targeting Requiem and Alg-2 did not result in extended culture viability, but resulted in an increase in maximum viable cell numbers and cumulative IVCD under fed-batch conditions. This in turn led to an approximately 1.5-fold increase in recombinant protein productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Al-Rubeai, M., & Singh, R. P. (1998). Apoptosis in cell culture. Current Opinion in Biotechnology, 9, 152–156.

    Article  CAS  Google Scholar 

  2. Arden, N., & Betenbaugh, M. J. (2004). Life and death in mammalian cell culture: Strategies for apoptosis inhibition. Trends in Biotechnology, 22, 174–180.

    Article  CAS  Google Scholar 

  3. Majid, F. A. A., Butler, M., & Al-Rubeai, M. (2007). Glycosylation of an immunoglobulin produced from a murine hybridoma cell line: The effect of culture mode and the anti-apoptotic gene, bcl-2. Biotechnology and Bioengineering, 97, 156–169.

    Article  CAS  Google Scholar 

  4. Charbonneau, J. R., & Gauthier, E. R. (2000). Prolongation of murine hybridoma cell survival in stationary batch culture by Bcl-xL expression. Cytotechnology, 34, 131–139.

    Article  CAS  Google Scholar 

  5. Tey, B. T., Singh, R. P., Piredda, L., Piacentini, M., & Al-Rubeai, M. (2000). Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. Journal of Biotechnology, 79, 147–159.

    Article  CAS  Google Scholar 

  6. Chiang, G. G., & Sisk, W. P. (2005). Bcl-xL mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnology and Bioengineering, 91, 779–792.

    Article  CAS  Google Scholar 

  7. Mastrangelo, A. J., Hardwick, J. M., Zou, S., & Betenbaugh, M. J. (2000). Part II. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnology and Bioengineering, 67, 555–564.

    Article  CAS  Google Scholar 

  8. Sauerwald, T. M., Betenbaugh, M. J., & Oyler, G. A. (2002). Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. Biotechnology and Bioengineering, 77, 704–716.

    Article  CAS  Google Scholar 

  9. Kim, N. S., & Lee, G. M. (2002). Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnology and Bioengineering, 78, 217–228.

    Article  CAS  Google Scholar 

  10. Figueroa, B. J., Ailor, E., Osborne, D., Hardwick, J. M., Reff, M., & Betenbaugh, M. J. (2007). Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Biotechnology and Bioengineering, 97, 877–892.

    Article  CAS  Google Scholar 

  11. Lim, S. F., Chuan, K. H., Liu, S., et al. (2006). RNAi suppression of Bax and Bak enhances viability in fed-batch cultures of CHO cells. Metabolic Engineering, 8, 509–522.

    Article  CAS  Google Scholar 

  12. Sauerwald, T. M., Figueroa, B., Jr, Hardwick, J. M., Oyler, G. A., & Betenbaugh, M. J. (2006). Combining caspase and mitochondrial dysfunction inhibitors of apoptosis to limit cell death in mammalian cell cultures. Biotechnology and Bioengineering, 94, 362–372.

    Article  CAS  Google Scholar 

  13. Wong, D. C. F., Wong, K. T. K., Lee, Y. Y., Nissom, P. M., Heng, C. K., & Yap, M. G. S. (2006). Transcriptional profiling of apoptotic pathways in batch and fed-batch CHO cell cultures. Biotechnology and Bioengineering, 94, 373–382.

    Article  CAS  Google Scholar 

  14. Wong, D. C. F., Wong, K. T. K., Nissom, P. M., Heng, C. K., & Yap, M. G. S. (2006). Targeting early apoptotic genes in batch and fed-batch CHO cell cultures. Biotechnology and Bioengineering, 95, 350–361.

    Article  CAS  Google Scholar 

  15. Gabig, T. G., Mantel, P. L., Rosli, R., & Crean, C. D. (1994). Requiem: A novel zinc-finger gene essential for apoptosis in myeloid cells. Journal of Biological Chemistry, 269, 29515–29519.

    CAS  Google Scholar 

  16. Mertsalov, I. B., Ninkina, N. N., Wanless, J. S., Buchman, V. L., Korochkin, L. I., & Kulikova, D. A. (2008). Generation of mutant mice with targeted disruption of two members of the d4 gene family: neuro-d4 and cer-d4. Doklady Biochemistry and Biophysics, 419, 65–68.

    Article  CAS  Google Scholar 

  17. Lim, Y., Seah, V. X. F., Mantalaris, A., Yap, M. G. S., & Wong, D. C. F. (2010). Elucidating the role of requiem in the growth and death of Chinese hamster ovary cells. Apoptosis, 15, 450–462.

    Article  Google Scholar 

  18. Tarabykina, S., Mollerup, J., Winding, P., & Berchtold, M. W. (2004). Alg-2, a multifunctional calcium binding protein? Frontiers in Bioscience, 9, 1817–1832.

    Article  CAS  Google Scholar 

  19. Rao, R. V., Poksay, K. S., Castro-Obregon, S., et al. (2004). Molecular components of a cell death pathway activated by endoplasmic reticulum stress. Journal of Biological Chemistry, 279, 177–187.

    Article  CAS  Google Scholar 

  20. Mahul-Mellier, A. L., Strappazzon, F., Petiot, A., et al. (2008). Alix and ALG-2 are involved in tumor necrosis factor receptor 1-induced cell death. Journal of Biological Chemistry, 283, 34954–34965.

    Article  CAS  Google Scholar 

  21. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  22. Scahill, S. J., Devos, R., Heyden, J. V. D., & Fiers, W. (1983). Expression and characterization of the product of a human immune interferon cDNA gene in Chinese hamster ovary cells. Proceedings of the National Academy of Sciences, 80, 4654–4658.

    Article  CAS  Google Scholar 

  23. Vito, P., Lacana, E., & Dadamio, L. (1996). Interfering with apoptosis: Ca2+ -binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science, 271, 521–525.

    Article  CAS  Google Scholar 

  24. Hoj, B. R., la Cour, J. M., Mollerup, J., & Berchtold, M. W. (2009). ALG-2 knockdown in HeLa cells results in G2/M cell cycle phase accumulation and cell death. Biochemical and Biophysical Research Communications, 378, 145–148.

    CAS  Google Scholar 

  25. la Cour, J. M., Mollerup, J., Winding, P., Tarabykina, S., Sehested, M., & Berchtold, M. W. (2003). Up-regulation of ALG-2 cancer tissue in hepatomas and lung. American Journal of Pathology, 163, 81–89.

    CAS  Google Scholar 

  26. Figueroa, B. J., Chen, S., Oyler, G. A., Hardwick, J. M., & Betenbaugh, M. J. (2004). Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnology and Bioengineering, 85, 589–600.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biomedical Research Council of the Agency for Science, Technology and Research (A*STAR), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny C. F. Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, Y., Mantalaris, A., Yap, M.G.S. et al. Simultaneous Targeting of Requiem & Alg-2 in Chinese Hamster Ovary Cells for Improved Recombinant Protein Production. Mol Biotechnol 46, 301–307 (2010). https://doi.org/10.1007/s12033-010-9304-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9304-3

Keywords

Navigation