Skip to main content

Advertisement

Log in

Comparative Studies of Various Artificial microRNA Expression Vectors for RNAi in Mammalian Cells

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Artificial microRNA (amiRNA) has recently become an important RNA interference (RNAi) technology for gene therapy and gene function studies. Here nine expression strategies were employed to construct plasmid vectors expressing amiRNA (amiR-Fluc) against firefly luciferase (Fluc). Our results indicate that all nine vectors can successfully produce mature amiR-Fluc and specifically suppress the expression of Fluc, although the RNAi efficiency in different mammalian cells displays obvious differences. Among these nine vectors, three can efficiently co-express DsRed reporter gene linked with amiR-Fluc cassette. Moreover, the recommended number of concatenated amiRNAs in a multi-amiRNA expression vector should not be more than four, and the relative position of an amiRNA in the multi-amiRNA expression vector has no apparent influence on its RNAi activity. In summary, all these results described here provide valuable information for the rational design and application of amiRNA expression vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cullen, B. R. (2004). Transcription and processing of human microRNA precursors. Molecular Cell, 16(6), 861–865.

    Article  CAS  Google Scholar 

  2. Cai, X., Hagedorn, C. H., & Cullen, B. R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12), 1957–1966.

    Article  CAS  Google Scholar 

  3. Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., et al. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal, 23(20), 4051–4060.

    Article  CAS  Google Scholar 

  4. Kim, V. N., & Nam, J. W. (2006). Genomics of microRNA. Trends in Genetics, 22(3), 165–173.

    Article  CAS  Google Scholar 

  5. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415–419.

    Article  CAS  Google Scholar 

  6. Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., & Kim, V. N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes and Development, 18(24), 3016–3027.

    Article  CAS  Google Scholar 

  7. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., & Kutay, U. (2004). Nuclear export of microRNA precursors. Science, 303(5654), 95–98.

    Article  CAS  Google Scholar 

  8. Yi, R., Qin, Y., Macara, I. G., & Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes and Development, 17(24), 3011–3016.

    Article  CAS  Google Scholar 

  9. Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., & Zamore, P. D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293(5531), 834–838.

    Article  CAS  Google Scholar 

  10. Gregory, R. I., Chendrimada, T. P., Cooch, N., & Shiekhattar, R. (2005). Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 123(4), 631–640.

    Article  CAS  Google Scholar 

  11. Zeng, Y., Wagner, E. J., & Cullen, B. R. (2002). Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Molecular Cell, 9(6), 1327–1333.

    Article  CAS  Google Scholar 

  12. Aagaard, L. A., Zhang, J., von Eije, K. J., Li, H., Saetrom, P., Amarzguioui, M., et al. (2008). Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Therapy, 15(23), 1536–1549.

    Article  CAS  Google Scholar 

  13. Qu, J., Ye, J., & Fang, R. (2007). Artificial microRNA-mediated virus resistance in plants. Journal of Virology, 81(12), 6690–6699.

    Article  CAS  Google Scholar 

  14. Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Wu, H. W., Yeh, S. D., et al. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24(11), 1420–1428.

    Article  CAS  Google Scholar 

  15. Schwab, R., Ossowski, S., Riester, M., Warthmann, N., & Weigel, D. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 18(5), 1121–1133.

    Article  CAS  Google Scholar 

  16. Liu, Y. P., Haasnoot, J., ter Brake, O., Berkhout, B., & Konstantinova, P. (2008). Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Research, 36(9), 2811–2824.

    Article  CAS  Google Scholar 

  17. Dickins, R. A., Hemann, M. T., Zilfou, J. T., Simpson, D. R., Ibarra, I., Hannon, G. J., et al. (2005). Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genetics, 37(11), 1289–1295.

    CAS  Google Scholar 

  18. Xia, X. G., Zhou, H., & Xu, Z. (2006). Multiple shRNAs expressed by an inducible pol II promoter can knock down the expression of multiple target genes. Biotechniques, 41(1), 64–68.

    Article  CAS  Google Scholar 

  19. Snyder, L. L., Esser, J. M., Pachuk, C. J., & Steel, L. F. (2008). Vector design for liver-specific expression of multiple interfering RNAs that target hepatitis B virus transcripts. Antiviral Research, 80(1), 36–44.

    Article  CAS  Google Scholar 

  20. Zhou, H., Xia, X. G., & Xu, Z. (2005). An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Research, 33(6), e62.

    Article  Google Scholar 

  21. Du, G., Yonekubo, J., Zeng, Y., Osisami, M., & Frohman, M. A. (2006). Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS Journal, 273(23), 5421–5427.

    Article  CAS  Google Scholar 

  22. Chung, K. H., Hart, C. C., Al-Bassam, S., Avery, A., Taylor, J., Patel, P. D., et al. (2006). Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Research, 34(7), e53.

    Article  Google Scholar 

  23. Sun, D., Melegari, M., Sridhar, S., Rogler, C. E., & Zhu, L. (2006). Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques, 41(1), 59–63.

    Article  CAS  Google Scholar 

  24. Bauer, M., Kinkl, N., Meixner, A., Kremmer, E., Riemenschneider, M., Forstl, H., et al. (2009). Prevention of interferon-stimulated gene expression using microRNA-designed hairpins. Gene Therapy, 16(1), 142–147.

    Article  CAS  Google Scholar 

  25. Boudreau, R. L., Martins, I., & Davidson, B. L. (2009). Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Molecular Therapy, 17(1), 169–175.

    Article  CAS  Google Scholar 

  26. Hu, T., Fu, Q., Chen, P., Ma, L., Sin, O., & Guo, D. (2009). Construction of an artificial MicroRNA expression vector for simultaneous inhibition of multiple genes in mammalian cells. International Journal of Molecular Sciences, 10(5), 2158–2168.

    Article  CAS  Google Scholar 

  27. Suh, M. R., Lee, Y., Kim, J. Y., Kim, S. K., Moon, S. H., Lee, J. Y., et al. (2004). Human embryonic stem cells express a unique set of microRNAs. Developmental Biology, 270(2), 488–498.

    Article  CAS  Google Scholar 

  28. He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833.

    Article  CAS  Google Scholar 

  29. Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J., & Elledge, S. J. (2005). A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proceedings of the National Academy of Sciences, 102(37), 13212–13217.

    Article  CAS  Google Scholar 

  30. Hu, T., Fu, Q., Chen, P., Zhang, K., & Guo, D. (2009). Generation of a stable mammalian cell line for simultaneous expression of multiple genes by using 2A peptide-based lentiviral vector. Biotechnology Letters, 31(3), 353–359.

    Article  CAS  Google Scholar 

  31. Bouabe, H., Fassler, R., & Heesemann, J. (2008). Improvement of reporter activity by IRES-mediated polycistronic reporter system. Nucleic Acids Research, 36(5), e28.

    Article  Google Scholar 

  32. Medina, M. F., & Joshi, S. (1999). RNA-polymerase III-driven expression cassettes in human gene therapy. Current Opinion in Molecular Therapeutics, 1(5), 580–594.

    CAS  Google Scholar 

  33. Yi, R., Doehle, B. P., Qin, Y., Macara, I. G., & Cullen, B. R. (2005). Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA, 11(2), 220–226.

    Article  CAS  Google Scholar 

  34. Diederichs, S., Jung, S., Rothenberg, S. M., Smolen, G. A., Mlody, B. G., & Haber, D. A. (2008). Coexpression of Argonaute-2 enhances RNA interference toward perfect match binding sites. Proceedings of the National Academy of Sciences, 105(27), 9284–9289.

    Article  CAS  Google Scholar 

  35. Zhu, X., Santat, L. A., Chang, M. S., Liu, J., Zavzavadjian, J. R., Wall, E. A., et al. (2007). A versatile approach to multiple gene RNA interference using microRNA-based short hairpin RNAs. BMC Molecular Biology, 8, 98.

    Article  Google Scholar 

  36. Zhou, H., Huang, C., & Xia, X. G. (2008). A tightly regulated Pol III promoter for synthesis of miRNA genes in tandem. Biochimica Biophysica Acta, 1779(11), 773–779.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by China “973” Program (#2006CB504305 and #2010CB911800), the National Natural Science Foundation of China (#30921001 and #30925003), and National Special Research Program of Major Infectious Diseases (#2008ZX10001–002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyin Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, T., Chen, P., Fu, Q. et al. Comparative Studies of Various Artificial microRNA Expression Vectors for RNAi in Mammalian Cells. Mol Biotechnol 46, 34–40 (2010). https://doi.org/10.1007/s12033-010-9264-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9264-7

Keywords

Navigation